基于递归小脑模型神经网络和卡尔曼滤波器的锂电池荷电状态预测
-
摘要: 由于储能系统被广泛应用到新能源汽车、分布式发电等领域,其在运行过程中的可靠性是研究的重点之一。荷电状态(SOC)是反映电池续航能力的关键参数。为保证储能系统的正常运行,提出了一种锂电池SOC估计的方法,将递归小脑模型神经网络(RCMNN)和卡尔曼滤波器(KF)都用于荷电状态估计。为了强化RCMNN的捕获动态特征的能力,在联想记忆层和权值记忆层均加入了递归单元。将采集的电压、电流和温度作为模型的输入,用于模拟储能系统的不同充、放电情况。考虑到实际工况下电池放电的复杂性,在不同的放电条件和不同SOC初值的情况下将 SOC 的实际值与预测值进行对比。试验结果表明,该预测方法在不同条件下都具有较高的精度和鲁棒性。