余登武, 刘敏, 汪元芹. 基于GRNN与注意力机制模型的非侵入式家用负荷分解[J]. 智慧电力, 2021, 49(3): 74-79.
引用本文: 余登武, 刘敏, 汪元芹. 基于GRNN与注意力机制模型的非侵入式家用负荷分解[J]. 智慧电力, 2021, 49(3): 74-79.
YU Deng-wu, LIU Min, WANG Yuan-qin. Non-invasive Household Load Decomposition Based on GRNN and Attention Mechanism Model[J]. Smart Power, 2021, 49(3): 74-79.
Citation: YU Deng-wu, LIU Min, WANG Yuan-qin. Non-invasive Household Load Decomposition Based on GRNN and Attention Mechanism Model[J]. Smart Power, 2021, 49(3): 74-79.

基于GRNN与注意力机制模型的非侵入式家用负荷分解

Non-invasive Household Load Decomposition Based on GRNN and Attention Mechanism Model

  • 摘要: 为了提高识别精度,提出一种基于GRNN与注意力机制模型的非侵入式家用负荷分解方法。采用批标准化来减少神经网络层与层之间的耦合,利用GRNN强大的时间序列特征表示能力,来提取电力负荷入口处测得的总用电信息与各电器能耗之间的关系,同时利用注意力机制来减少模型的权重参数。最后通过算例验证了算法的可行性与优越性。

     

    Abstract: In order to improve identification accuracy,the paper proposes a non-invasive household load decomposition method based on GRNN and attention mechanism model. Batch standardization is adopted to reduce the coupling between the layers of neural network,and GRNN’s powerful time series feature representation ability is used to extract the relationship between the total electricity consumption measured at power load access point and the power consumption of each electrical appliance. Meanwhile,the attention mechanism is used to reduce the weight parameters of the model. Finally,a numerical example is provided to verify the feasibility and superiority of the algorithm.

     

/

返回文章
返回