邬浩泽, 朱晨烜, 张贻山, 龙艳花. 一种基于改进模糊聚类算法的自适应典型日选取方法[J]. 智慧电力, 2022, 50(1): 60-67.
引用本文: 邬浩泽, 朱晨烜, 张贻山, 龙艳花. 一种基于改进模糊聚类算法的自适应典型日选取方法[J]. 智慧电力, 2022, 50(1): 60-67.
WU Hao-ze, ZHU Chen-xuan, ZHANG Yi-shan, LONG Yan-hua. Adaptive Method for Selecting Typical Days Based on Improved Fuzzy Clustering Algorithm[J]. Smart Power, 2022, 50(1): 60-67.
Citation: WU Hao-ze, ZHU Chen-xuan, ZHANG Yi-shan, LONG Yan-hua. Adaptive Method for Selecting Typical Days Based on Improved Fuzzy Clustering Algorithm[J]. Smart Power, 2022, 50(1): 60-67.

一种基于改进模糊聚类算法的自适应典型日选取方法

Adaptive Method for Selecting Typical Days Based on Improved Fuzzy Clustering Algorithm

  • 摘要: 考虑单一算法在选取典型日负荷曲线上的不足,将改进后的可能模糊C均值聚类算法(PFCM)与模糊线性判别法(FLDA)相结合提出一种新的集成聚类方法。首先将原有的PFCM改进,得到改进后的PFCM,并将其应用于最佳聚类数的选取;然后将改进后的PFCM与FLDA相结合,将该集成聚类算法应用于负荷曲线的聚类。最后,通过某电网全年负荷数据验证了所提方法在典型日选取上的有效性。

     

    Abstract: Considering the deficiency of single algorithm in selecting typical daily load curve,this paper proposes a new integrated clustering method by combining the improved possible fuzzy C-means(PFCM)algorithm with fuzzy linear discriminant analysis(FLDA). Firstly,the original PFCM is improved to get the improved PFCM,and it is applied to the selection of the optimal number of clusters. Then the improved PFCM is combined with FLDA,and the integrated clustering algorithm is applied to the clustering of the load curves. Finally,the validity of this method in selecting the typical days is verified by the annual load data of a power grid.

     

/

返回文章
返回