基于系统最大频率偏差的DFIG自适应下垂控制策略

薛水莲, 殷志龙, 於锋, 王琦, 桑顺

薛水莲, 殷志龙, 於锋, 王琦, 桑顺. 基于系统最大频率偏差的DFIG自适应下垂控制策略[J]. 智慧电力, 2024, 52(8): 98-104,128.
引用本文: 薛水莲, 殷志龙, 於锋, 王琦, 桑顺. 基于系统最大频率偏差的DFIG自适应下垂控制策略[J]. 智慧电力, 2024, 52(8): 98-104,128.
XUE Shui-lian, YIN Zhi-long, WU Feng, WANG Qi, SANG Shun. DFIG Adaptive Droop Control Strategy Based on Maximum System Frequency Deviation[J]. Smart Power, 2024, 52(8): 98-104,128.
Citation: XUE Shui-lian, YIN Zhi-long, WU Feng, WANG Qi, SANG Shun. DFIG Adaptive Droop Control Strategy Based on Maximum System Frequency Deviation[J]. Smart Power, 2024, 52(8): 98-104,128.

基于系统最大频率偏差的DFIG自适应下垂控制策略

基金项目: 

国家自然科学基金资助项目(52307208)~~

详细信息
    作者简介:

    薛水莲(1988),女,陕西渭南人,硕士研究生,工程师,主要研究方向为新能源发电技术、新能源系统的建模和分析

  • 中图分类号: TM315

DFIG Adaptive Droop Control Strategy Based on Maximum System Frequency Deviation

  • 摘要: 针对现有双馈异步风力发电机组(DFIG)调频策略无法兼顾发挥调频潜力与保障自身调频运行安全稳定的问题,提出一种基于系统最大频率偏差的DFIG自适应下垂控制策略。首先,搭建DFIG的风能捕获模型,明确最大功率跟踪运行机理;然后,引入模糊控制对现有下垂控制中的控制增益进行改进,使DFIG在保障自身运行稳定的情况下实时调整调频增发功率,以改善系统频率跌落;最后,在Matlab/Simulink中搭建电力仿真系统模型,验证所提策略的有效性。算例分析表明,所提策略在不同工况下均可充分发挥DFIG自身调频潜力,减少系统最大频率偏差。
    Abstract: Aiming at the problem that the existing frequency regulation strategy cannot give full play to the potential of frequency regulation and ensure the safety and stability of DFIG frequency regulation operation,an adaptive droop control strategy of DFIG based on maximum frequency deviation is proposed. Firstly,the wind energy capture model of DFIG is built to clarify the maximum power point tracking mechanism. Then,the control gain is improved in the existing traditional droop control method for wind turbines by fuzzy control. DFIG can adjust the frequency regulation power in real time and improve the frequency drop of the system while ensuring its own stable operation. Finally,the power simulation system model is built in Matlab/Simulink to verify the effectiveness of the proposed strategy. Case analysis shows that the proposed adaptive droop control can make fully use of the frequency regulation potential of DFIG and reduce the maximum frequency deviation of the system under different operating conditions.
  • [1] 王一清,沙倩,刘秋林.区域综合能源系统接入的配电网扩展规划研究[J].电力科学与技术学报,2023,38(6):198-205.

    WANG Yiqing,SHA Qian,LIU Qiulin,et al. Research on distribution network expansion planning for regional integrated energy system access[J].Journal of Electric Power Science and Technology,2023,38(6):198-205.

    [2] 杨滢,杨晓雷,项中明,等.参与一次调频储能型风电场的交流外送振荡特性分析[J].智慧电力,2023,51(9):105-112.

    YANG Ying,YANG Xiaolei,XIANG Zhongming,et al. Oscillation characteristic analysis of wind farm with energy storage participating primary frequency control[J].Smart Power,2023,51(9):105-112.

    [3] 赵雪珺,刘天琪,何川,等.基于汇聚效应的风电集群接入与区域电网协调规划研究[J].电测与仪表,2023,60(12):51-58.

    ZHAO Xuejun,LIU Tianqi,HE Chuan,et al. Coordinated planning of wind farm cluster access and regional grid based on convergence effect[J]. Electrical Measurement&Instrumentation,2023,60(12):51-58.

    [4] 郑云平,焦春雷,亚夏尔·吐尔洪,等.基于新能源发电的构网型协调储能控制策略研究[J].高压电器,2023,59(7):65-74.

    ZHENG Yunping,JIAO Chunlei,YAXAR Turgun,et al. Research on grid forming coordinated energy storage control strategy based on converter interfaced generation[J]. High Voltage Apparatus,2023,59(7):65-74.

    [5]

    CHANGQING C,YI S,TONGGUANG Y,et al. Virtual inertia coordination control strategy of DFIG-based wind turbine for improved grid frequency response ability[J]. Electric Power Systems Research,2023,216:109076.

    [6]

    DENDOUGA A,ESSOUNBOULI N. High performance of variablepitch wind system based on a direct matrix converter-fed DFIG using third order sliding mode control[J]. Wind Engineering,2024,48(3):325-348.

    [7] 杨本星,王伟,杨明轩,等.辅助风电并网的构网型储能控制策略研究[J].高压电器,2023,59(7):56-64.

    YANG Benxing,WANG Wei,YANG Mingxuan,et al. Research on grid forming energy storage control strategy for auxiliary wind power grid connection[J]. High Voltage Apparatus,2023,59(7):56-64.

    [8] 杨立滨,张磊,刘艳章,等.基于分布式框架的新能源场站并网性能评估[J].电力建设,2022,43(5):137-144.

    YANG Libin,ZHANG Lei,LIU Yanzhang,et al. Grid-connection performance evaluation of renewable energy station under distributed framework[J],Electric Power Construction,2022,43(5):137-144.

    [9] 孙华东,许涛,郭强,等.英国“8·9”大停电事故分析及对中国电网的启示[J].中国电机工程学报,2019,39(21):6183-6192.

    SUN Huadong,XU Tao,GUO Qiang,et al. Analysis on blackout in Great Britain power grid on august 9th 2019 and its enlightenment to power grid in China[J]. Proceedings of the CSEE,2019,39(21):6183-6192.

    [10] 蔡文亮,赵正晖,汪洋,等.面向新型能源结构的系统调频技术回顾与展望[J].电测与仪表,2023,60(10):1-9.

    CAI Wenliang,ZHAO Zhenghui,WANG Yang,et al. Review and prospect of frequency modulation technology for new energy structure[J]. Electrical Measurement&Instrumentation,2023,60(10):1-9.

    [11] 刘洪波,彭晓宇,张崇,等.风电参与电力系统调频控制策略综述[J].电力自动化设备,2021,41(11):81-92.

    LIU Hongbo,PENG Xiaoyu,ZHANG Chong,et al. Overview of wind power participating in frequency regulation control strategy for power system[J]. Electric Power Automation Equipment,2021,41(11):81-92.

    [12] 陈长青,李欣然,杨徉,等.基于风机调频特性的储能配置方法及协调运行策略[J].电力建设,2022,43(1):96-103.

    CHEN Changqing,LI Xinran,YANG Yang,et al. Energy storage configuration method and coordinated operation strategy based on wind power frequency regulation characteristics[J]. Electric Power Construction,2022,43(1):96-103.

    [13] 刘辉,罗薇,苏懿,等.计及ROCOF与转子动能的风电机组自适应下垂控制策略[J].电力工程技术,2023,42(6):161-169.

    LIU Hui,LUO Wei,SU Yi,et al. Adaptive droop control strategy for wind turbines based on ROCOF and rotor kinetic energy[J].Electric Power Engineering Technology,2023,42(6):161-169.

    [14] 崔幼石,严干贵,刘櫂芮,等.一种基于双馈风机锁相环动态响应的风-火协同调频策略[J].智慧电力,2023,51(1):38-45,77.

    CUI Youshi,YAN Gangui,LIU Zhaorui,et al. Wind-thermal power coordinated frequency regulation strategy based on dynamic response of phase-locked loop for double-fed wind turbine[J].Smart Power,2023,51(1):38-45,77.

    [15] 楼佩婕,边晓燕,崔勇,等.计及辅助服务的微电网源荷协同调频优化控制策略[J].电力自动化设备,2022,42(1):156-163,177.

    LOU Peijie,BIAN Xiaoyan,CUI Yong,et al. Optimal control strategy of source-load coordinated frequency regulation in microgrid considering ancillary service[J]. Electric Power Automation Equipment,2022,42(1):156-163,177.

    [16]

    CHEN C,LI X,LIU X,et al. Reliability improvement of wind power frequency modulation based on look-ahead control strategy and stage of charge optimization of energy storage[J]. International Journal of Energy Research,2021,46(4):4739-4753.

    [17] 李世春,王丽君,薛臻瑶,等.基于惯量“削弱-补偿”责任分担的风电场虚拟惯量控制方法[J].智慧电力,2023,51(11):30-37.

    LI Shichun,WANG Lijun,XUN Zhenyao,et al. Virtual inertia control method for wind farm based on inertia “weakeningcompensation”responsibility sharing[J]. Smart Power,2023,51(11):30-37.

    [18] 屈兴武,王栋,马天诚,等.支撑电网频率稳定的双馈风机一次调频控制需求分析[J].智慧电力,2023,51(10):38-46.

    QU Xingwu,WANG Dong,MA Tiancheng,et al. Requirement analysis of DFIG primary frequency regulation control supporting grid frequency stability[J]. Smart Power,2023,51(10):38-46.

    [19]

    LI T,SUN S,LI M,et al. Intelligent ADRC-based inertia control for offshore wind farm[J]. IET Generation,Transmission&Distribution,2023,18(3):530-541.

    [20] 王鑫,杨德健,金恩淑,等.双馈风电机的虚拟惯性控制优化策略[J].智慧电力,2022,50(8):1-6,81.

    WANG Xin,YANG Dejian,JIN Enshu,et al. Improved virtual inertial control strategy of doubly-fed induction generator[J]. Smart Power,2022,50(8):1-6,81.

    [21] 黎静华,宋诚鑫,兰飞.基于参数模糊推理的风机虚拟惯量优化控制策略[J].电力系统自动化,2023,47(20):125-133.

    LI Jinghua,SONG Chengxin,LAN Fei. Optimal control strategy of virtual for wind turbine based on fuzzy inference of parameters[J].Automation of Electric Power Systems,2023,47(20):125-133.

    [22]

    LIU J,WANG X.Analytical determination of stable droop loop gain for a DFIG participating in frequency regulation[J]. The Journal of Engineering,2017,2017(13):1447-1452.

    [23] 高海淑,张峰,丁磊.风电机组两分段下垂调频控制策略及参数整定方法[J].电力系统自动化,2023,47(18):111-121.

    GAO Haishu,ZHANG Feng,DING Lei. Two-segment droop frequency regulation control strategy and parameter setting method for wind turbines[J].Automation of Electric Power Systems,2023,47(18):111-121.

    [24] 王中冠,刘嘉琛,郭力,等.基于状态空间映射的模型不完备风电场调频能力在线评估方法[J].中国电机工程学报,2023,43(3):927-939.

    WANG Zhongguan,LIU Jiachen,GUO Li,et al. Online frequency characteristics analysis for incomplete-model wind farms based on state space mapping[J]. Proceedings of the CSEE,2023,43(3):927-939.

    [25]

    LIU B,ZHAO J,HUANG Q,et al. Nonlinear virtual inertia control of WTGs for enhancing primary frequency response and suppressing drivetrain torsional oscillations[J].IEEE Transactions on Power Systems,2021,36(5):4102-4113.

    [26] 陈汝斯,李大虎,周泓宇,等.基于梯次启动与优化算法的多集群风机最优调频方法[J].电力建设,2023,44(11):54-63.

    CHEN Rusi,LI Dahu,ZHOU Hongyu,et al. Optimal frequency regulation in multi-cluster wind turbines using a step start-up and optimization algorithm[J]. Electric Power Construction,2023,44(11):54-63.

    [27] 聂永辉,刘家僮,孙斌,等.基于转子动能释放的风电并网系统非线性频率控制策略研究[J].中国电机工程学报,2023,43(23):9127-9136.

    NIE Yonghui,LIU Jiatong,SUN Bin,et al. Research on nonlinear frequency control strategy of wind power grid connected system based on rotor kinetic energy release[J]. Proceedings of the CSEE,2023,43(23):9127-9136.

    [28]

    DEJIAN Y,XIN W,WEI C,et al. Adaptive frequency droop feedback control-based power tracking operation of a DFIG for temporary frequency regulation[J]. IEEE Transactions on Power Systems,2024,2(39):2682-2692.

计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-09
  • 刊出日期:  2024-08-19

目录

    /

    返回文章
    返回