陈铁, 蔡东阁, 何思敏, 曹颖. 基于数据驱动的直流输电后续换相失败预判的研究[J]. 智慧电力, 2022, 50(8): 68-74.
引用本文: 陈铁, 蔡东阁, 何思敏, 曹颖. 基于数据驱动的直流输电后续换相失败预判的研究[J]. 智慧电力, 2022, 50(8): 68-74.
CHEN Tie, CAI Dong-ge, HE Si-min, CAO Ying. Prediction of Subsequent Commutation Failure of HVDC Transmission Based on Data-driven[J]. Smart Power, 2022, 50(8): 68-74.
Citation: CHEN Tie, CAI Dong-ge, HE Si-min, CAO Ying. Prediction of Subsequent Commutation Failure of HVDC Transmission Based on Data-driven[J]. Smart Power, 2022, 50(8): 68-74.

基于数据驱动的直流输电后续换相失败预判的研究

Prediction of Subsequent Commutation Failure of HVDC Transmission Based on Data-driven

  • 摘要: 高压直流输电后续换相失败影响因素复杂、随机性较强难以预判。用极限学习机进行换相失败预判,提出了一种基于数据驱动的后续换相失败预判方法。采集首次换相失败后逆变侧换流母线电压、直流电流、触发延迟角数据,通过计算得到直流电流的最大值、平均值、最小值等11个故障特征作为极限学习机分类器的特征样本,比较测试隐含层激活函数和隐含层节点数对模型准确率的影响,构建了后续换相失败的预判模型。利用PSCAD/EMTDC建立高压直流输电模型,对模型进行训练和测试。模型测试结果验证了所提模型的有效性。

     

    Abstract: The subsequent commutation failure of HVDC transmission is difficult to be predicted due to the complex influence factors and high randomness. Extreme learning machine(ELM)is used to predict commutation failure,and a data-driven method for predicting subsequent commutation failure is proposed.The data of inverter-side commutation bus voltage,DC current and trigger delay angle after the first phase change failure are gathered,and 11 fault features such as maximum,average and minimum values of DC current are calculated as the feature samples of ELM classifier. The influence of implicit layer activation function and the number of hidden layer nodes on the accuracy of the model is compared,and a pre-judgment model of subsequent commutation failure is constructed. PSCAD/EMTDC is used to build a high-voltage DC transmission model,train and test are made to the model. The test results verify the effectiveness of the proposed model.

     

/

返回文章
返回