朱灿元, 杨超, 李舒涛, 陈勇跃, 徐鑫瀚. 考虑清洁能源与储能的分布式数据中心低碳调度策略[J]. 智慧电力, 2023, 51(2): 16-23.
引用本文: 朱灿元, 杨超, 李舒涛, 陈勇跃, 徐鑫瀚. 考虑清洁能源与储能的分布式数据中心低碳调度策略[J]. 智慧电力, 2023, 51(2): 16-23.
ZHU Can-yuan, YANG Chao, LI Shu-tao, CHEN Yong-yue, XU Xin-han. Low-carbon Scheduling Strategy for Distributed Data Centers Considering Clean Energy and Energy Storage[J]. Smart Power, 2023, 51(2): 16-23.
Citation: ZHU Can-yuan, YANG Chao, LI Shu-tao, CHEN Yong-yue, XU Xin-han. Low-carbon Scheduling Strategy for Distributed Data Centers Considering Clean Energy and Energy Storage[J]. Smart Power, 2023, 51(2): 16-23.

考虑清洁能源与储能的分布式数据中心低碳调度策略

Low-carbon Scheduling Strategy for Distributed Data Centers Considering Clean Energy and Energy Storage

  • 摘要: 针对目前数据中心日益增长的能耗需求以及资源利用率较低的问题,提出了一种多个地理位置数据中心之间实现多区域能效的任务调度和能源管理模型。首先,获取光伏发电量、电价、任务量、UPS储能电池状态信息;然后,根据最大资源利用原则和装箱近似算法动态调整每个时隙的任务分配策略和服务器的激活数量。最后,根据任务量的大小,采取不同的供电方式,并计算电池的循环成本等信息,判断是否进行光伏并网或电池充放电操作。算例分析验证了所提策略的有效性。

     

    Abstract: Aiming at the problems of the increasing demand for energy consumption and the low utilization of resources in current data center,the paper proposes a task scheduling and energy management model for multi-regional energy efficiency between multiple geographic data centers. First of all,photovoltaic power generation,electricity price,task quota,UPS energy storage battery status information are obtained. Then according to the maximum resource utilization principle and the boxing approximate algorithm,a task allocation strategy and the number of servers activated in each time slot are dynamically adjusted. Finally,according to the size of the task,different power supply methods are adopted,and the cycle cost of the battery and other information are calculated to determine whether to conduct photovoltaic grid connection or battery charging and discharging operation. The effectiveness of the proposed strategy is verified with an example.

     

/

返回文章
返回