魏瑞增, 王磊, 梁永超, 申原, 侯慧, 朱韶华. 台风灾害下电力抢修队伍智能调拨技术研究[J]. 智慧电力, 2023, 51(1): 123-130.
引用本文: 魏瑞增, 王磊, 梁永超, 申原, 侯慧, 朱韶华. 台风灾害下电力抢修队伍智能调拨技术研究[J]. 智慧电力, 2023, 51(1): 123-130.
WEI Rui-zeng, WANG Lei, LIANG Yong-chao, SHEN Yuan, HOU Hui, ZHU Shao-hua. Intelligent Allocation Technology for Electric Emergency Repair Crew under Typhoon Disaster[J]. Smart Power, 2023, 51(1): 123-130.
Citation: WEI Rui-zeng, WANG Lei, LIANG Yong-chao, SHEN Yuan, HOU Hui, ZHU Shao-hua. Intelligent Allocation Technology for Electric Emergency Repair Crew under Typhoon Disaster[J]. Smart Power, 2023, 51(1): 123-130.

台风灾害下电力抢修队伍智能调拨技术研究

Intelligent Allocation Technology for Electric Emergency Repair Crew under Typhoon Disaster

  • 摘要: 为了减少停电带来的损失,提出了一种2阶段台风灾害下电力抢修队伍智能调拨技术。首先,综合考虑气象因素、地理因素及电网因素,使用随机森林算法在1 km×1 km网格尺度上对停电用户数量进行预测;其次,对每个网格的受损程度等级进行划分,根据受损程度不同,用非支配排序遗传算法对抢修路径进行寻优;最后,以广东省某县为例探讨该调拨策略有效性。案例结果表明:停电用户数量预测准确性达88.48%;电力抢修路径优化可帮助电网公司寻求最优抢修调拨策略,有效应对台风灾害。

     

    Abstract: To reduce the loss caused by power outages,this paper proposes a two-stage intelligent allocation technology for repair crews under typhoon disasters. Firstly,meteorological factors,geographical factors and power grid factors are considered to predict the number of users encountering the power outages on the grid scale of 1 km×1 km using the random forest algorithm. Then the damage degree of each grid is graded,and the non-dominated sorting genetic algorithm is used to optimize the repair path according to the damage degree.Finally,the effectiveness of the allocation technology is verified by an example of a county in Guangdong. The results show that the forecasting accuracy of the number of users encountering the power outages can reach 88.48%,and the optimization of the repair path can help to choose the optimal allocation strategies of the repair for power grid companies,effectively coping with the typhoon disasters.

     

/

返回文章
返回