李元, 李星辉, 孙渭薇, 李睿, 林金山, 张大宁, 张冠军. 基于多模型级联的油浸式电力变压器故障诊断方法[J]. 智慧电力, 2023, 51(6): 86-92.
引用本文: 李元, 李星辉, 孙渭薇, 李睿, 林金山, 张大宁, 张冠军. 基于多模型级联的油浸式电力变压器故障诊断方法[J]. 智慧电力, 2023, 51(6): 86-92.
LI Yuan, LI Xing-hui, SUN Wei-wei, LI Rui, LIN Jin-shan, ZHANG Da-ning, ZHANG Guan-jun. Fault Diagnosis Method of Oil-immersed Power Transformer Based on Multi-model Cascade Fusion[J]. Smart Power, 2023, 51(6): 86-92.
Citation: LI Yuan, LI Xing-hui, SUN Wei-wei, LI Rui, LIN Jin-shan, ZHANG Da-ning, ZHANG Guan-jun. Fault Diagnosis Method of Oil-immersed Power Transformer Based on Multi-model Cascade Fusion[J]. Smart Power, 2023, 51(6): 86-92.

基于多模型级联的油浸式电力变压器故障诊断方法

Fault Diagnosis Method of Oil-immersed Power Transformer Based on Multi-model Cascade Fusion

  • 摘要: 为充分考虑不同诊断模型间数据信息提取的差异性,发挥不同诊断模型的优势,本文基于集成学习思想提出一种双层级联的变压器故障诊断模型构建策略。首先利用无编码比值方法对油中溶解气体数据进行特征提取,然后利用第一层中的4个分类器对比数据并行分类,最后利用第二层分类模型对第一层模型的组合诊断结果进行特征提取,得到最终的诊断结果。案例验证结果表明,相较于支持向量机、分类回归树、K近邻和朴素贝叶斯4种第一层分类器,级联模型在每一种故障类型上的分类精度都达到了四个单一分类器的最优或次优水平,在综合识别准确率上分别提升了6%,24.8%,8.96%,4.99%。

     

    Abstract: In order to fully consider the differences of data information extraction among different diagnosis models and bring the advantages of different diagnosis models,the paper proposes a strategy for constructing a two-layer cascade transformer fault diagnosis model based on ensemble learning. Firstly,the feature extraction of dissolved gas data is performed by using the non-code ratios. Then four classifiers at the first layer are used to classify the data in parallel. Finally,the diagnosis results are obtained by using the second layer classification model to extract the features from the combined diagnosis results of the first layer model. The case validation shows that compared with the four classifiers at the first layer including support vector machine,classification regression tree,K-nearest neighbor,and Naive Bayes,the cascade model achieves the optimal or suboptimal level of classification accuracy for each classifier for each fault type,and improves the comprehensive recognition accuracy by 6%,24.8%,8.96% and 4.99% respectively.

     

/

返回文章
返回