海涛, 范恒, 王楷杰, 刘振语, 陈永鉴. 基于PSO-SVM算法的风电机组结冰故障诊断[J]. 智慧电力, 2021, 49(4): 1-6,74.
引用本文: 海涛, 范恒, 王楷杰, 刘振语, 陈永鉴. 基于PSO-SVM算法的风电机组结冰故障诊断[J]. 智慧电力, 2021, 49(4): 1-6,74.
HAI Tao, FAN Heng, WANG Kai-jie, LIU Zhen-yu, CHEN Yong-jian. Icing Fault Diagnosis of Wind Turbines Based on PSO-SVM Algorithm[J]. Smart Power, 2021, 49(4): 1-6,74.
Citation: HAI Tao, FAN Heng, WANG Kai-jie, LIU Zhen-yu, CHEN Yong-jian. Icing Fault Diagnosis of Wind Turbines Based on PSO-SVM Algorithm[J]. Smart Power, 2021, 49(4): 1-6,74.

基于PSO-SVM算法的风电机组结冰故障诊断

Icing Fault Diagnosis of Wind Turbines Based on PSO-SVM Algorithm

  • 摘要: 针对不平衡数据进行处理,结合自适应邻近的混合重取样的方法处理原始数据中小类数据,增加小类数据的有效实例;设计了一种基于相似函数的欠采样算法处理,减少大类数据的重复性数据,在不改变数据高信息性的情况下对数据降维,最后将特征数据导入到支持向量机中采用粒子群算法对参数进行优化。实验结果表明,特征量的提取在该模型中预测性能达到79.21%,在极限学习与随机森林(RF)算法中提升度为22.93%与48.83%,均有显著的提升,为风力机叶片结冰故障诊断提供了新的思路。

     

    Abstract: In the light of the unbalanced data,adaptive neighboring hybrid resampling method is used to process small types of data in the original data,increase the effective examples of small types of data.A similar function-based undersampling algorithm processing is designed to reduce the repetitive data in large types of data.The dimensionality of the data is reduced without changing the high information of the data,and finally the characteristic data is imported into the support vector machine(SVM)and is optimized with PSO.The experimental results show that the prediction performance of the feature extraction in the model reaches 79.21%,and the improvement is 22.93%and 48.83%in the Extreme Learning Machine (ELM) and Random Forest (RF) algorithms,both the significant improvement provides a new idea for the diagnosis of wind turbine blade icing faults.

     

/

返回文章
返回