高恬, 牛东晓, 纪正森, 斯琴卓娅. 双碳目标下基于分解-集成的月度煤电需求预测研究[J]. 智慧电力, 2022, 50(9): 22-29.
引用本文: 高恬, 牛东晓, 纪正森, 斯琴卓娅. 双碳目标下基于分解-集成的月度煤电需求预测研究[J]. 智慧电力, 2022, 50(9): 22-29.
GAO Tian, NIU Dong-xiao, JI Zheng-sen, SI Qin-zhuo-ya. Monthly Coal Power Demand Forecasting Based on Decomposition-Integration Under Carbon Peak & Carbon Neutrality Goals[J]. Smart Power, 2022, 50(9): 22-29.
Citation: GAO Tian, NIU Dong-xiao, JI Zheng-sen, SI Qin-zhuo-ya. Monthly Coal Power Demand Forecasting Based on Decomposition-Integration Under Carbon Peak & Carbon Neutrality Goals[J]. Smart Power, 2022, 50(9): 22-29.

双碳目标下基于分解-集成的月度煤电需求预测研究

Monthly Coal Power Demand Forecasting Based on Decomposition-Integration Under Carbon Peak & Carbon Neutrality Goals

  • 摘要: 月度煤电需求预测对于指导双碳目标下煤电发展及保障能源供应具有重要意义,但是月度煤电需求变化具有非平稳性、非线性的特点。为准确预测未来火电需求的变化,基于分解-集成思想,改进奇异谱分析(ISSA)将原始序列进行分解重构,得到多个不同频率的子序列,应用麻雀搜索算法(SSA)改进的极限学习机(ELM)模型预测各子序列,叠加后得到最终煤电需求预测值。以江苏省煤电需求为例,将所提方法与基于集合经验模态分解(EMD)的EMD-SSA-ELM模型和未经分解的SSA-ELM模型进行对比,结果表明所提方法能有效去除噪声分量的影响,误差值最小,平均绝对百分比误差相较于EMD-SSA-ELM与SSA-ELM分别降低8.0%和17.6%,预测精度更高,适用性更好。

     

    Abstract: Monthly coal power demand forecasting is important for guiding the development of coal power and securing reliable energy supply under carbon peak & carbon neutrality goals,but the monthly coal power demand variation is non-stationary and non-linear. In order to accurately forecast future coal power demand,based on the idea of decomposition-integration,improved singular spectrum analysis(ISSA)is introduced to decompose and reconstruct the original demand series to obtain several sub-series with different frequencies,and sparrow search algorithm(SSA)is applied to optimize the extreme learning machine(ELM)model to forecast each sub-series,and then superimposes them to obtain the final coal power demand forecast. Taking Jiangsu province as an example,the proposed method is compared with EMD-SSA-ELM model based on the ensemble empirical modal decomposition(EMD)and SSAELM model without decomposition,and the results show that the proposed method can effectively remove the influence of noise components with lower error values,and the average absolute percentage error is 8.0% and 17.6% lower than that of EMD-SSA-ELM and SSA-ELM respectively,with higher prediction accuracy and better applicability.

     

/

返回文章
返回