陈曦, 司恒斌, 张良, 冯泊翔, 任晓龙, 田双, 张志宏. 基于图神经网络的电-热联合能源系统优化调度研究[J]. 智慧电力, 2023, 51(7): 67-73,87.
引用本文: 陈曦, 司恒斌, 张良, 冯泊翔, 任晓龙, 田双, 张志宏. 基于图神经网络的电-热联合能源系统优化调度研究[J]. 智慧电力, 2023, 51(7): 67-73,87.
CHEN Xi, SI Heng-bin, ZHANG Liang, FENG Bo-xiang, REN Xiao-long, TIAN Shuang, ZHANG Zhi-hong. Optimal Scheduling of Electricity-thermal Combined Energy System Based on Graph Neural Network[J]. Smart Power, 2023, 51(7): 67-73,87.
Citation: CHEN Xi, SI Heng-bin, ZHANG Liang, FENG Bo-xiang, REN Xiao-long, TIAN Shuang, ZHANG Zhi-hong. Optimal Scheduling of Electricity-thermal Combined Energy System Based on Graph Neural Network[J]. Smart Power, 2023, 51(7): 67-73,87.

基于图神经网络的电-热联合能源系统优化调度研究

Optimal Scheduling of Electricity-thermal Combined Energy System Based on Graph Neural Network

  • 摘要: 电-热联合能源系统的优化调度对实现多能互补、节能减排具有重要意义。在使用强化学习方法实现能源系统优化调度工作中,将系统状态作为向量用来学习训练,忽略了系统设备间的连接关系。基于此,提出了基于图神经网络架构的值分布最大熵Actor-Critic算法的强化学习模型。将电-热联合能源系统建模为图结构数据,并输入提出的强化学习模型中,利用图神经网络模型提取系统状态并输出调度策略。所提模型可以充分利用系统的拓扑结构信息,实现更为有效地探索学习。算例仿真验证了所提方法的有效性。

     

    Abstract: The optimal scheduling of electric-thermal combined energy system is of great significance to realize multi-energy complementarity,energy saving and emission reduction. The reinforcement learning method is used to realize the optimal scheduling of the energy system. The system state is used as a vector for learning and training,and the connection relationship between the system equipment is ignored. A reinforcement learning model of value distribution maximum entropy Actor-Critic algorithm based on graph neural network architecture is proposed. The electric-thermal combined energy system is modeled as graph structure data,which is input into the proposed reinforcement learning model,and the graph neural network model is used to extract the system state and output the scheduling strategy. The proposed model can make full use of the system topology information to achieve more effective exploration and learning. Simulation examples verify the effectiveness of the proposed method.

     

/

返回文章
返回