李思妍, 台升, 张宇航, 邱才明. 基于轻量化YOLOv3和Tesseract OCR的电力设备标志牌识别技术[J]. 智慧电力, 2021, 49(7): 79-85,108.
引用本文: 李思妍, 台升, 张宇航, 邱才明. 基于轻量化YOLOv3和Tesseract OCR的电力设备标志牌识别技术[J]. 智慧电力, 2021, 49(7): 79-85,108.
LI Si-yan, TAI Sheng, ZHANG Yu-hang, QIU Cai-ming. Electrical Sign Recognition Technology Based on Simplified YOLOv3 and Tesseract OCR[J]. Smart Power, 2021, 49(7): 79-85,108.
Citation: LI Si-yan, TAI Sheng, ZHANG Yu-hang, QIU Cai-ming. Electrical Sign Recognition Technology Based on Simplified YOLOv3 and Tesseract OCR[J]. Smart Power, 2021, 49(7): 79-85,108.

基于轻量化YOLOv3和Tesseract OCR的电力设备标志牌识别技术

Electrical Sign Recognition Technology Based on Simplified YOLOv3 and Tesseract OCR

  • 摘要: 针对"无人化"变电站中电力设备标志牌的实时监测识别问题,提出了一种基于轻量化YOLOv3和Tesseract OCR的电力设备标志牌识别方法,针对标志牌特定的图像特征,设计了端点定位策略解决图像预处理的透视形变问题,利用Tesseract OCR引擎训练标志牌专属语言库,实现了高精度的电力设备标志牌检测与文字识别一体化。实验结果验证了所提方法对电力设备标志牌实时检测识别的有效性。

     

    Abstract: Aiming at "unmanned" real-time monitoring and recognition of electrical signs in substations,a simplified YOLOv3 and Tesseract OCR method is proposed. In the light of the particular electrical sign image features,an end point positioning strategy is designed to treat perspective transformation during image pre-processing,and Tesseract OCR engine is used to train the exclusive electrical sign language database,realize the sign detection and recognition task with high accuracy. The experiment results prove the effectiveness of the proposed method.

     

/

返回文章
返回