李欣, 付豫韬, 李新宇, 陈德秋, 鲁玲, 郭攀锋, 柳圣池. 基于GAF-CNN的电力系统暂态稳定评估[J]. 智慧电力, 2023, 51(11): 45-52.
引用本文: 李欣, 付豫韬, 李新宇, 陈德秋, 鲁玲, 郭攀锋, 柳圣池. 基于GAF-CNN的电力系统暂态稳定评估[J]. 智慧电力, 2023, 51(11): 45-52.
LI Xin, FU Yu-tao, LI Xin-yu, CHEN De-qiu, LU Ling, GUO Pan-feng, LIU Sheng-chi. Power System Transient Stability Assessment Based on GAF-CNN[J]. Smart Power, 2023, 51(11): 45-52.
Citation: LI Xin, FU Yu-tao, LI Xin-yu, CHEN De-qiu, LU Ling, GUO Pan-feng, LIU Sheng-chi. Power System Transient Stability Assessment Based on GAF-CNN[J]. Smart Power, 2023, 51(11): 45-52.

基于GAF-CNN的电力系统暂态稳定评估

Power System Transient Stability Assessment Based on GAF-CNN

  • 摘要: 为保障电力系统安全稳定运行,针对电力系统暂态稳定评估(TSA)问题,提出了一种基于数据图像化的深度学习方法。首先,通过格拉姆角场(GAF)将原始的电力系统数据转为易于区分稳定与失稳的二维图像。其次,利用得到的二维图像数据集训练卷积神经网络(CNN)模型并进行在线应用。最后,通过在CEPRI 36节点系统和含风机的IEEE39节点系统、IEEE300节点系统中对所提TSA方法进行验证,结果表明了所提方法的有效性。

     

    Abstract: To ensure the safe and stable operation of power systems,the paper proposes a deep learning method based on data visualization for the power system transient stability assessment(TSA)problem. Firstly,the raw power system data is converted into two-dimensional images that can easily distinguish between stability and instability by Gramian angular field(GAF). Then an obtained two-dimension image collection is used to train a convolutional neural network(CNN)model and the online application is done.Finally,the proposed method is verified in the CEPRI 36-BUS system,IEEE 39-BUS system with wind turbine and IEEE 300-BUS system,and the results show the effectiveness of the proposed method.

     

/

返回文章
返回