迟清, 万康鸿, 袁福祥, 李良书, 吴经锋, 李文慧, 杨鼎革, 辛健斌. 融合粒子滤波和环境标签矫正的巡检机器人自主定位算法[J]. 智慧电力, 2021, 49(4): 101-107.
引用本文: 迟清, 万康鸿, 袁福祥, 李良书, 吴经锋, 李文慧, 杨鼎革, 辛健斌. 融合粒子滤波和环境标签矫正的巡检机器人自主定位算法[J]. 智慧电力, 2021, 49(4): 101-107.
CHI Qing, WAN Kang-hong, YUAN Fu-xiang, LI Liang-shu, WU Jing-feng, LI Wen-hui, YANG Ding-ge, XIN Jian-bin. Autonomous Localization Algorithm of Inspection Robot Based on Particle Filter and Environmental Label Correction[J]. Smart Power, 2021, 49(4): 101-107.
Citation: CHI Qing, WAN Kang-hong, YUAN Fu-xiang, LI Liang-shu, WU Jing-feng, LI Wen-hui, YANG Ding-ge, XIN Jian-bin. Autonomous Localization Algorithm of Inspection Robot Based on Particle Filter and Environmental Label Correction[J]. Smart Power, 2021, 49(4): 101-107.

融合粒子滤波和环境标签矫正的巡检机器人自主定位算法

Autonomous Localization Algorithm of Inspection Robot Based on Particle Filter and Environmental Label Correction

  • 摘要: 随着巡检机器人的需求量增加,巡检机器人在复杂环境中的自主定位问题越来越重要。提出了融合粒子滤波和环境标签矫正的自主定位算法,充分利用巡检机器人的工作环境特性和蒙特卡罗定位算法的特性,提高机器人自主定位的效率和效果。基于ROS建立了机器人仿真环境,对定位算法的效果进行了测试。实验结果表明融合粒子滤波和环境标签矫正的自主定位算法的效率和准确性有所提高,能够很快实现定位恢复。

     

    Abstract: With the increasing demand of inspection robot,autonomous localization of inspection robot in complex environment becomes more and more important. An autonomous positioning algorithm is proposed combining particle filter and environmental label correction,which makes full use of the work environment characteristics of inspection robot and the characteristics of Monte Carlo positioning algorithm to improve the efficiency of robot autonomous positioning rate and effect. A robot simulation environment is established based on ROS,and the effect of the localization algorithm is tested. The results show that the efficiency and accuracy of the autonomous localization algorithm which integrates particle filter and environmental label correction are improved,location recovery can be quickly achieved.

     

/

返回文章
返回