朱卫涛, 邹文文, 贾钦, 卢耀文, 雷武. 基于DWT-SOM-HFS的配电台区短期负荷预测研究与应用[J]. 智慧电力, 2023, 51(6): 78-85.
引用本文: 朱卫涛, 邹文文, 贾钦, 卢耀文, 雷武. 基于DWT-SOM-HFS的配电台区短期负荷预测研究与应用[J]. 智慧电力, 2023, 51(6): 78-85.
ZHU Wei-tao, ZOU Wen-wen, JIA Qin, LU Yao-wen, LEI Wu. Research and Application of Short Term Load Forecasting in Distribution Station Area Based on DWT-SOM-HFS[J]. Smart Power, 2023, 51(6): 78-85.
Citation: ZHU Wei-tao, ZOU Wen-wen, JIA Qin, LU Yao-wen, LEI Wu. Research and Application of Short Term Load Forecasting in Distribution Station Area Based on DWT-SOM-HFS[J]. Smart Power, 2023, 51(6): 78-85.

基于DWT-SOM-HFS的配电台区短期负荷预测研究与应用

Research and Application of Short Term Load Forecasting in Distribution Station Area Based on DWT-SOM-HFS

  • 摘要: 针对由电力负荷时序特征不确定性引起的负荷预测精度下降、以及现有预测方法模型可解释性弱问题,提出一种基于离散小波变换、自组织特征映射与层次模糊系统多模态组合方法的配电台区短期负荷预测方法。首先,利用离散小波变换将原始时域负荷序列分解为不同的频域分量,并将其作为负荷聚类的特征量;然后,采用自组织特征映射算法对负荷进行聚类,将原始负荷数据划分为带特征量的数据分量组;运用层次模糊系统模型对各组分量分别进行负荷预测,再将各组分量预测结果进行叠加,得到最终负荷预测值;最后,采用某地区所属配电台区的实际负荷数据进行算例分析,结果表明所提方法能够有效提高负荷预测精度,同时具有合理的模型可解释性。

     

    Abstract: In view of the low accuracy of load forecasting caused by the uncertainty of power load time-series features and the poor model interpretability of existing forecasting method,the paper proposes a forecasting method for short-term load in distribution station area based on the combination method of discrete wavelet transform(DWT),self-organizing feature map(SOM)and hierarchical fuzzy system(HFS). Firstly,the raw load sequences in the time domain are decomposed into several components in the frequency domain by using the DWT,selecting the components as the features for the load clustering. Then the SOM algorithm is used to cluster the raw load data and divide it into different data groups with the features. After that,the HFS model is used to predict the components in all types of data groups,and the prediction results are overlapped to obtain the final load forecasting value. Finally,the simulation analysis is done with the actual load data from a distribution station area. The results demonstrate that the proposed method can effectively improve the load forecasting accuracy and has the reasonable model interpretability.

     

/

返回文章
返回