马智峰, 韩吉军, 王垒, 张波, 孙宽, 陈鑫. 基于IPSO-NESN算法的输电线路接地电阻预测[J]. 智慧电力, 2024, 52(6): 116-122.
引用本文: 马智峰, 韩吉军, 王垒, 张波, 孙宽, 陈鑫. 基于IPSO-NESN算法的输电线路接地电阻预测[J]. 智慧电力, 2024, 52(6): 116-122.
MA Zhi-feng, HAN Ji-jun, WANG Lei, ZHANG Bo, SUN Kuan, CHEN Xin. Grounding Resistance Prediction of Transmission Line Based on IPSO-NESN[J]. Smart Power, 2024, 52(6): 116-122.
Citation: MA Zhi-feng, HAN Ji-jun, WANG Lei, ZHANG Bo, SUN Kuan, CHEN Xin. Grounding Resistance Prediction of Transmission Line Based on IPSO-NESN[J]. Smart Power, 2024, 52(6): 116-122.

基于IPSO-NESN算法的输电线路接地电阻预测

Grounding Resistance Prediction of Transmission Line Based on IPSO-NESN

  • 摘要: 为解决求解输电线路接地电阻值精度不足的问题,提出了1种基于改进粒子群算法(PSO)优化非线性回声状态网络(NESN)的预测模型,对输电线路的接地电阻进行预测分析。首先,通过引入读出层,将标准回声状态网络进行改进得到NESN。其次,将PSO算法加入动态惯性权重,动态学习因子和变异扰动后得到改进的粒子群优化算法(IPSO),以提高种群的多样性,并提升了种群的全局搜索能力与局部开发能力。最后,利用IPSO算法优化NESN的参数,建立基于IPSO-NESN的预测模型。算例分析结果表明,IPSO-NESN模型预测效果优于回声状态网络(ESN)和PSO-NESN模型,可应用于输电线路接地电阻预测。

     

    Abstract: In order to solve the problem of insufficient accuracy of transmission line grounding resistance value,an improved nonlinear echo state network based on particle swarm optimization is proposed to predict and analyze the grounding resistance of transmission line.Firstly,by introducing the readout layer,the standard echo state network is improved to obtain the nonlinear echo state network(NESN). Secondly,the PSO algorithm is added to the dynamic inertia weight,dynamic learning factor and mutation disturbance to obtain the improved particle swarm optimization algorithm(IPSO),so as to improve the population diversity and enhance the global search ability and local development ability of the population. Finally,a prediction model based on IPSO-NESN is established to optimize the parameters of NESN through the IPSO algorithm. The results show that IPSO-NESN has better prediction performance than ESN and PSO-NESN models,can be applied to predict the grounding resistance of transmission lines.

     

/

返回文章
返回