1.西安交通大学 绿色氢电全国重点实验室,西安 710049
2.西安电子科技大学 先进材料与纳米科技学院, 西安710126
明传旺(1998),男,硕士生,从事质子陶瓷氨燃料电池、合成氨等方面的研究,xjtuepemingcw@163.com;
赵宇豪(1998),男,博士生,从事质子陶瓷燃料电池/电解池等方面的研究,yhzhao@stu.xjtu.edu.cn;
吕友军(1978),男,教授,博士,从事多相流热化学、氢能制备与利用等方面的研究,yjlu@mail.xjtu.edu.cn;
李一航(1991),男,副教授,博士,从事固体氧化物燃料电池/电解池等方面的研究,liyihang@xidian.edu.cn。
收稿:2025-01-21,
修回:2025-03-19,
网络出版:2025-10-25,
纸质出版:2025-10-25
移动端阅览
明传旺,赵宇豪,吕友军等.氨基固体氧化物燃料电池的研究进展与机遇[J].综合智慧能源,2025,47(10):10-25.
MING Chuanwang,ZHAO Yuhao,LYU Youjun,et al.Research progress and opportunities in ammonia-fueled solid oxide fuel cells[J].BLASTING,2025,47(10):10-25.
明传旺,赵宇豪,吕友军等.氨基固体氧化物燃料电池的研究进展与机遇[J].综合智慧能源,2025,47(10):10-25. DOI: 10.3969/j.issn.2097-0706.2025.10.002.
MING Chuanwang,ZHAO Yuhao,LYU Youjun,et al.Research progress and opportunities in ammonia-fueled solid oxide fuel cells[J].BLASTING,2025,47(10):10-25. DOI: 10.3969/j.issn.2097-0706.2025.10.002.
作为一种氢能载体和零碳燃料,氨在清洁能源发电领域的应用前景广阔。探讨了以氨为燃料的固体氧化物燃料电池(DA-SOFCs)的应用现状及发展方向。DA-SOFCs可分为氧离子传导型(O-SOFCs)和质子传导型(H-SOFCs),阐述了两者的工作原理、电解质和电极材料的选择、阳极的分解过程,并总结了电解质、电极材料、操作温度等因素对电池性能的影响。比较了不同类型DA-SOFCs使用NH
3
燃料的性能差异与原因:O-SOFCs在高温条件下能高效完成氨的裂解与电化学反应协同,但高温对材料的制约限制了其发展;H-SOFCs展现出高效的性能优势,但仍面临电解质材料稳定性差、阳极抗氮化能力弱、低温氨裂解效率低等挑战。
As a hydrogen energy carrier and zero-carbon fuel, ammonia is considered to have significant potential in clean energy power generation. The application status and future development directions
of direct-ammonia solid oxide fuel cells (DA-SOFCs) are thoroughly discussed. DA-SOFCs are classified into oxygen-conducting (O-SOFCs) and proton-conducting (H-SOFCs) types. Their working principles are outlined, along with the selection of electrolyte and electrode materials and the ammonia decomposition process at the anode. The influence of electrolyte type, electrode materials, and operating temperature on cell performance is summarized. Performance differences and their underlying reasons among different DA-SOFC types using NH
3
as fuel are compared and analyzed. O-SOFCs can achieve efficient and synergistic ammonia cracking and electrochemical reactions under high-temperature conditions, but material constraints under such conditions limit their development. H-SOFCs demonstrate promising efficiency, yet face challenges including poor stability of electrolyte materials, weak nitridation resistance of the anode, and low efficiency of ammonia decomposition at lower temperatures.
AGENCY I E . CO 2 Emissions in 2023 [R]. AGENCY I E , 2024 .
国家能源局 , 国家发展改革委 . 氢能产业发展中长期规划 ( 2021 - 2035 年)[EB/OL].( 2022-03-23 )[ 2024-12-02 ]. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202203/t20220323_1320038.html https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202203/t20220323_1320038.html .
迟军 , 俞红梅 . 基于可再生能源的水电解制氢技术(英文) [J]. 催化学报 , 2018 , 39 ( 3 ): 390 - 394 .
CHI Jun , YU Hongmei . Water electrolysis based on renewable energy for hydrogen production [J]. Chinese Journal of Catalysis , 2018 , 39 ( 3 ): 390 - 394 .
GIDDEY S , BADWAL S P S , MUNNINGS C , et al . Ammonia as a Renewable Energy Transportation Media [J]. Acs Sustainable Chemistry & Engineering , 2017 , 5 ( 11 ): 10231 - 10239 .
王源慧 . 直接氨燃料电池中的阳极催化剂的研究 [D]. 武汉 : 中国地质大学 , 2021 .
WANG Yuanhui . The study of anode catalysts for direct ammonia fuel cell [D]. Wuhan : China University of Geosciences , 2021 .
LEHMANN J , LUSCHTINETZ T , GULDEN J . Power to X-green hydrogen for electrical energy and fuel, for production and products [C]// Proceedings of the 17th International Conference Heat Transfer and Renewable Sources of Energy (HTRSE) . E D P Sciences : CEDEX A , 2018 .
ZHAO Y , SETZLER B P , WANG J H , et al . An efficient direct ammonia fuel cell for affordable carbon-neutral transportation [J]. Joule , 2019 , 3 ( 10 ): 2472 - 2484 .
YANG J , AKAGI T , OKANISHI T , et al . Catalytic influence of oxide component in Ni-based cermet anodes for ammonia-fueled solid oxide fuel cells [J]. Fuel Cells , 2015 , 15 ( 2 ): 390 - 397 .
倪士栋 , 魏胜利 , 杜振华 , 等 . 氨燃料固体氧化物燃料电池性能研究进展 [J]. 精细化工 , 2024 , 41 ( 4 ): 750 - 760 .
NI Shidong , WEI Shengli , DU Zhenhua , et al . Research progress on performance of ammonia solid oxide fuel cells [J]. Fine Chemicals , 2024 , 41 ( 4 ): 750 - 760 .
FARR R D , VAYENAS C G . Ammonia high-temperature solid electrolyte fuel-cell [J]. Journal of The Electrochemical Society , 1980 , 127 ( 7 ): 1478 - 1483 .
WOJCIK A , MIDDLETON H , DAMOPOULOS I , et al . Ammonia as a fuel in solid oxide fuel cells [J]. Journal of Power Sources , 2003 , 118 ( 1-2 ): 342 - 348 .
GANLEY J , THOMAS F , SEEBAUER E , et al . A priori catalytic activity correlations: The difficult case of hydrogen production from ammonia [J]. Catalysis Letters , 2004 , 96 ( 3/4 ): 117 - 122 .
邵晴 , 罗凌虹 , 关成志 , 等 . 固体氧化物电池Ni-YSZ燃料电极长期稳定性研究进展 [J]. 陶瓷学报 , 2022 , 43 ( 5 ): 759 - 779 .
SHAO Qing , LUO Linghong , GUAN Chengzhi , et al . Research progress on the long-term stability of Ni-YSZ fuel electrodes in solid oxide cells [J]. Journal of Ceramics , 2022 , 43 ( 5 ): 759 - 779 .
MOLOUK A F S , YANG J , OKANISHI T , et al . Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells [J]. Journal of Power Sources , 2016 , 305 : 72 - 79 .
MA Q L , MA J J , ZHOU S , et al . A high-performance ammonia-fueled SOFC based on a YSZ thin-film electrolyte [J]. Journal of Power Sources , 2007 , 164 ( 1 ): 86 - 89 .
OH S , OH M J , HONG J , et al . A comprehensive investigation of direct ammonia-fueled thin-film solid -oxide fuel cells: Performance,limitation,and prospects [J]. iScience , 2022 , 25 ( 9 ): 105009 .
SHY S S , HSIEH S C , CHANG H Y . A pressurized ammonia -fueled anode -supported sol id oxide fuel cell: Power performance and electrochemical impedance measurements [J]. Journal of Power Sources , 2018 , 396 : 80 - 87 .
LI T , LING Y H , LIN B , et al . A simple, feasible, and non -hazardous laboratory evaluation of direct ammonia solid oxide fuel cells fueled by aqueous ammonia [J]. Separation and Purification Technology , 2022 , 297 : 121511 .
XU K , ZHU F , HOU M Y , et al . Activating and stabilizing the surface of anode for high -performing direct -ammonia solid oxide fuel cells [J]. Nano Research , 2023 , 16 ( 2 ): 2454 - 2462 .
WANG Y H , YANG J , WANG J X , et al . Low temperature ammonia decomposition catalyst and its application for direct ammonia-fueled solid oxide fuel cells [J]. ECS Transactions , 2019 , 91( 1 ) 1611 - 1619
MA Q L , PENG R R , TIAN L Z , et al . Direct utilization of ammonia in intermediate -emperature solid oxide fuel cells [J]. Electrochemistry Communications , 2006 , 8 ( 11 ): 1791 - 1795 .
LIU M F , PENG R R , DONG D H , et al . Direct liquid methanol -fueled solid oxide fuel cell [J]. Journal of Power Sources , 2008 , 185 ( 1 ): 188 - 192 .
MENG G Y , JIANG C R , MA J J , et al . Comparative study on the performance of a SDC -based SOFC fueled by ammonia and hydrogen [J]. Journal of Power Sources , 2007 , 173 ( 1 ): 189 - 193 .
HASHINOKUCHI M , YOKOCHI R , AKIMOTO W , et al . Enhancement of anode activity at Ni/Sm-doped CeO 2 cermet anodes by Mo addition in NH 3 -fueled solid oxide fuel cells [J]. Solid State Ionics , 2016 , 285 : 222 - 226 .
JIANG H , LIANG Z X , QIU H , et al . A High-performance and durable direct-ammonia symmetrical solid oxide fuel cell with nano La 0.6 SSr 0.4 Fe 0.7 Ni 0.2 Mo 0.1 O 3- δ -decorated doped ceria electrode [J]. Nanomaterials , 2024 , 14 ( 8 ): 14080673 .
YANG J , MOLOUK A F S , OKANISHI T , et al . A stability study of Ni/Yttria-stabilized zirconia anode for direct ammonia solid oxide fuel cells [J]. ACS Applied Materials & Interfaces , 2015 , 7 ( 51 ): 28701 - 28707 .
HASHINOKUCHI M , ZHANG M J , DOI T , et al . Enhancement of anode activity and stability by Cr addition at Ni/Sm-doped CeO 2 cermet anodes in NH 3 -fueled solid oxide fuel cells [J]. Solid State Ionics , 2018 , 319 : 180 - 185 .
SHI H G , TANG J Y , YU W Q , et al . Advances in power generation from ammonia via electrocatalytic oxidation in direct ammonia fuel cells [J]. Chemical Engineering Journal , 2024 , 488 : 150896 .
SINGH V , MUROYAMA H , MATSUI T , et al . Influence of cell design on the performance of direct ammonia-fueled solid oxide fuel cell: Anode-VS. electrolyte-supported cell [C]// Proceedings of the 15th International Symposium on Solid Oxide Fuel Cells(SOFC) , Hollywood. Electrochemical Soc Inc , 2017 .
CAO J , JI Y , SHAO Z . New insights into the proton-conducting solid oxide fuel cells [J]. Journal of the Chinese Ceramic Society , 2021 , 49 ( 1 ): 83 - 92 .
LYU J D , WANG L , FAN L H , et al . Chemical stability of doped BaCeO 3 -BaZrO 3 solid solutions in different atmospheres [J]. Journal of Rare Earths , 2008 , 26 ( 4 ): 505 - 510 .
PELLETIER L , MCFARLAN A , MAFFEI N . Ammonia fuel cell using doped barium cerate proton conducting solid electrolytes [J]. Journal of Power Sources , 2005 , 145 ( 2 ): 262 - 265 .
张靖 , 刘宇宙 , 贺贝贝 , 等 . 燃料电池金属有机框架质子膜材料研究展望 [J]. 综合智慧能源 , 2022 , 44 ( 8 ): 97 - 106 .
ZHANG Jing , LIU Yuzhou , HE Beibei , et al . Reviews on proton membrane materials for metal-organic frameworks in fuel cells [J]. Integrated Intelligent Energy , 2022 , 44 ( 8 ): 97 - 106 .
YANG L , WANG S Z , BLINN K , et al . Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr 0.1 Ce 0.7 Y 0.2- x Yb x O 3- δ [J]. Science , 2009 , 326 : 126 - 129 .
YANG J , MOLOUK A F S , OKANISHI T , et al . Electrochemical and catalytic properties of Ni/BaCe 0.75 Y 0.25 O 3- δ anode for direct ammonia-fueled solid oxide fuel cells [J]. ACS Applied Materials & Interfaces , 2015 , 7 ( 13 ): 7406 - 7412 .
MIYAZAKI K , OKANISHI T , MUROYAMA H , et al . Development of Ni-Ba(Zr,Y)O 3 cermet anodes for direct ammonia-fueled solid oxide fuel cells [J]. Journal of Power Sources , 2017 , 365 : 148 - 154 .
DUAN C C , KEE R J , ZHU H Y , et al . Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells [J]. Nature , 2018 , 557 : 217 - 222 .
XIE K , YAN R Q , DONG D H , et al . A modified suspension spray combined with particle gradation method for preparation of protonic ceramic membrane fuel cells [J]. Journal of Power Sources , 2008 , 179 ( 2 ): 576 - 583 .
LIN Y , RAN R , GUO Y M , et al . Proton-conducting fuel cells operating on hydrogen, ammonia and hydrazine at intermediate temperatures [J]. International Journal of Hydrogen Energy , 2010 , 35 ( 7 ): 2637 - 2642 .
AN H , LEE H-W , KIM B-K , et al . A 5×5 cm 2 protonic ceramic fuel cell with a power density of 1.3 W cm -2 at 600℃ [J]. Nature Energy , 2018 , 3 ( 10 ): 870 - 875 .
LIU F , DENG H , DIERCKS D , et al . Lowering the operating temperature of protonic ceramic electrochemical cells to <450 ℃ [J]. Nature Energy , 2023 , 8 ( 10 ): 1145 - 1157 .
刘琪 , 陈绘丽 . 基于NH 3 燃料的Ni-BZCYYb阳极在SOFC中的应用 [J]. 山西大学学报(自然科学版) , 2023 , 46 ( 1 ): 202 - 207 .
LIU Qi , CHEN Huili . Application of Ni-BZCYYb anode in SOFC based on NH 3 fuel [J]. Journal of Shanxi University (Natural Science Edition) , 2023 , 46 ( 1 ): 202 - 207 .
HE F , GAO Q N , LIU Z Q , et al . A new Pd doped proton conducting perovskite oxide with multiple functionalities for efficient and stable power generation from ammonia at reduced temperatures [J]. Advanced Energy Materials , 2021 , 11 ( 19 ): 1 - 10 .
ZHANG H , ZHOU Y C , PEI K , et al . An efficient and durable anode for ammonia protonic ceramic fuel cells [J]. Energy & Environmental Science , 2022 , 15 ( 1 ): 287 - 295 .
PAN Y X , ZHANG H , XU K , et al . A high-performance and durable direct NH 3 tubular protonic ceramic fuel cell integrated with an internal catalyst layer [J]. Applied Catalysis B: Environmental , 2022 , 306 : 121071 .
ZHU L Z , CADIGAN C , DUAN C C , et al . Ammonia-fed reversible protonic ceramic fuel cells with Ru-based catalyst [J]. Communications Chemistry , 2021 , 4 ( 1 ): 00559 - 2 .
ZHANG H , XU K , XU Y S , et al . In situ formed catalysts for active, durable, and thermally stable ammonia protonic ceramic fuel cells at 550℃ [J]. Energy & Environmental Science , 2024 , 17 ( 10 ): 3433 - 3442 .
KIM D , BAE K T , KIM K J , et al . High-performance protonic ceramic electrochemical cells [J]. ACS Energy Letters , 2022 , 7 ( 7 ): 393 - 400 .
XU M , YU J , SONG Y , et al . Advances in ceramic thin films fabricated by pulsed laser deposition for intermediate-temperature solid oxide fuel cells [J]. Energy & Fuels , 2020 , 34 ( 9 ): 10568 - 10582 .
OKANISHI T , OKURA K , SRIFA A , et al . Comparative study of ammonia-fueled solid oxide fuel cell systems [J]. Fuel Cells , 2017 , 17 ( 3 ): 383 - 390 .
KISHIMOTO M , MUROYAMA H , SUZUKI S , et al . Development of 1 kW-class ammonia-fueled solid oxide fuel cell stack [J]. Fuel Cells , 2020 , 20 ( 1 ): 80 - 88 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621