长安大学 能源与电气工程学院,陕西,西安,710018
纸质出版:2025
移动端阅览
刘义艳,李国良,代 杰.基于VMD-TCN-BiLSTM-Attention的短期电力负荷预测[J].智慧电力,2025,53(10):87-94.
LIU Yiyan, LI Guoliang, DAI Jie. Short-term Power Load Forecasting Based on VMD-TCN-BiLSTM-Attention[J]. 2025, 53(10): 87-94.
刘义艳,李国良,代 杰.基于VMD-TCN-BiLSTM-Attention的短期电力负荷预测[J].智慧电力,2025,53(10):87-94. DOI: 10.20204/j.sp.2025.10012.
LIU Yiyan, LI Guoliang, DAI Jie. Short-term Power Load Forecasting Based on VMD-TCN-BiLSTM-Attention[J]. 2025, 53(10): 87-94. DOI: 10.20204/j.sp.2025.10012.
针对短期电力负荷数据具有非线性和波动性等特点而导致的预测精度不足问题,提出一种基于变分模态分解(VMD)、时间卷积网络(TCN)、双向长短期记忆网络(BiLSTM)与注意力机制(Attention)相结合的新型预测模型。首先,采用VMD方法将电力负荷数据分解成多个不同频率的模态分量,利用TCN模型提取模态分量中的时序特征;其次,通过BiLSTM网络进一步挖掘序列依赖关系;最后,引入注意力机制对BiLSTM输出的特征进行加权处理。实验结果表明,所提模型与其他传统模型相比预测精度显著提升,在短期电力负荷预测中具有较高的应用价值。
To address the issue of insufficient prediction accuracy caused by the nonlinear and volatile nature of short-term electrical load data, a novel forecasting model integrating variational mode decomposition (VMD), temporal convolutional network (TCN), bidirectional long short-term memory (BiLSTM), and attention mechanism is proposed. First, the VMD method is applied to decompose the electrical load data into multiple intrinsic mode functions at different frequencies. The TCN model is then used to extract temporal features from these modal components. Subsequently, the BiLSTM network further captures contextual dependencies within the sequences. Finally, an attention mechanism is introduced to adaptively weight the features output by BiLSTM. Experimental results demonstrate that the proposed model significantly improves prediction accuracy compared to other traditional models, showing high practical value in short-term electrical load forecasting.
阚超,劭文锋.基于SSA-PSO-GRU的短期电力负荷预测[J].电子设计工程,2024,32(12):54-59.
李甲祎,赵兵,刘宣,等.基于DWT-Informer的台区短期负荷预测[J].电测与仪表,2024,61(3):160-166,191.
SHU Z,YUHONG W.An improved software defect prediction model based on grey incidence analysis and Naive Bayes algorithm[J].Journal of Intelligent & Fuzzy Systems,2022,43(5):6047-6060.
YOUNESS M,ABDOULAYE K B,RACHID F,et al.A feature weighted K-nearest neighbor algorithm based on association rules[J].Journal of Ambient Intelligence and Humanized Computing,2024,15(7):2995-3008.
SICHAO C,LIEJIANG H,YUANJUN P,et al.Decision tree-based prediction approach for improving stable energy management in smart grids[J].Journal of High Speed Networks,2023,29(4):295-305.
HAN L,WANG X,YU Y,et al.Power load forecast based on CS-LSTM neural network[J].Mathematics,2024,12(9):1402-1402.
徐云武,李红斌,张传计.基于优选建模和深度置信网络的电压互感器误差定量评估方法[J].电测与仪表,2024,61(8):55-62.
匡洪海,郭茜.基于多特征提取-卷积神经网络-长短期记忆网络的短期风电功率预测方法[J].发电技术,2025,46(1):93-102.
KAITONG W,XIANGANG P,ZHIWEN C,et al.A novel short-term household load forecasting method combined BiLSTM with trend feature extraction[J].Energy Reports,2023,9(8):1013-1022.
WANG D,LI S,FU X.Short-term power load forecasting based on secondary cleaning and CNN-BILSTM-Attention[J].Energies,2024,17(16):4142-4142.
PHAN B Q,NGUYEN T T.Enhancing wind speed forecasting accuracy using a GWO-nested CEEMDAN-CNN-BiLSTM model[J].ICT Express,2024,10(3):485-490.
YANG M,CHEN Y,FANG G,et al.A short-term power load forecasting method based on SBOA-SVMD-TCN-BiLSTM[J].Electronics,2024,13(17):3441-3441.
NADA M,HAMID O,ISMAEL J.Short-term electric load forecasting using an EMD-BI-LSTM approach for smart grid energy management system[J].Energy & Buildings,2023,288(8):466-325.
包广斌,刘晨,张波,等.基于CEEMDAN-SBiGRU-OMHA的短期电力负荷预测[J].计算机系统应用,2024,33(10):124-132.
SUN H,YU Z,ZHANG B.Research on short-term power load forecasting based on VMD and GRU[J].PloS One,2024,19(7):e0306566.
马莉,霍耀佳,吴杨,等.基于VMD和KFCM-SVM的高压断路器声振联合故障诊断方法[J].高压电器,2024,60(8):53-62.
顾仲翔,马宏忠,张勇,等.基于VMD与优化SVM的变压器绕组松动缺陷振动信号诊断方法[J].高压电器,2023,59(1):117-125.
CHEN Q,JIANG C,LEI B.Improved load forecasting method based on TCN-BiGRU and attention mechanism[J].Journal of Physics:Conference Series,2024,2849(1):012049.
何瑨麟,郝建新,苏成飞,等.基于SVMD-BO-BiTCN的超短期光伏发电功率预测[J].分布式能源,2024,9(5):22-31.
王义国,林峰,李琦,等.基于TCN-LSTM模型的电网电能质量扰动分类研究[J].电力系统保护与控制,2024,52(17):161-167.
YANG M,CHEN Y,FANG G,et al.A short-term power load forecasting method based on SBOA-SVMD-TCN-BiLSTM[J].Electronics,2024,13(17):3441-3441.
LUO S,WANG B,GAO Q,et al.Stacking integration algorithm based on CNN-BiLSTM-Attention with XGBoost for short-term electricity load forecasting[J].Energy Reports,2024,122676-2689.
杨秀,胡钟毓,田英杰,等.基于Attention机制的CNN-GRU配网线路重过载短期预测方法[J].电力科学与技术学报,2023,38(1):201-209.
季玉琦,严亚帮,和萍,等.基于K-Medoids聚类与栅格法提取负荷曲线特征的CNN-LSTM短期负荷预测[J].电力系统保护与控制,2023,51(18):81-93.
庞博文,丁月明,杜善慧,等.基于CEEMDAN-BO-LSTNet的风电出力短期预测[J].电测与仪表,2023,60(9):109-116,170.
邹港,赵斌,罗强,等.基于PCA-VMD-MVO-SVM的短期光伏输出功率预测方法[J].电力科学与技术学报,2024,39(5):163-171.
马静静,王曦,王亮.基于GRA-PSO-BP神经网络的办公建筑负荷率及冷冻水供水温度预测[J].西安工程大学学报,2023,37(6):17-25.
BAI H,GUAN Y,CAI Y,et al.Short-term power load forecasting based on EMD-GWO-BP[J].Journal of Physics:Conference Series,2024,2806(1):012022-012022.
王峰.基于CPS和VMD的实时电力需求饱和自适应预测[J].电子设计工程,2024,32(9):110-113,118.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621