1. 南昌大学工程建设学院
2. 智能系统与人机交互江西省重点实验室
纸质出版:2025
移动端阅览
方涛, 郑辉, 赵文虎, 等. 基于图像四叉树SBFEM和深度学习的缺陷反演模型[J]. 三峡大学学报(自然科学版), 2025,(4):45-52.
方涛, 郑辉, 赵文虎, 等. 基于图像四叉树SBFEM和深度学习的缺陷反演模型[J]. 三峡大学学报(自然科学版), 2025,(4):45-52. DOI: 10.13393/j.cnki.issn.1672-948X.2025.04.007.
为快速识别结构内部未知缺陷,提出了一种基于图像四叉树比例边界有限元法和深度学习的缺陷反演模型.采用平衡四叉树递归分解原理对结构域进行网格剖分,并自动加密缺陷边缘区域网格;所得到的平衡四叉树网格模型采用比例边界有限元法进行数值分析,求解精度不受悬挂节点影响,且模型中仅含6种单元模式,自动化程度高,极大降低了缺陷反演模型训练数据集的成本;基于极限学习机作为学习规则,搭建了孔洞缺陷反演的深度学习人工神经网络模型,有效避免了模型训练过程中目标函数迭代陷入局部最优解的问题.采用统计学方法分析反演模型精度,并探究孔洞缺陷尺度及训练集样本数量对反演结果的影响.结果表明:所构建的反演模型得到的缺陷参数与预留的洁净数据相吻合,模型能够精准量化缺陷位置和尺寸.
王浩,王江北,罗浩东,王立文.基于改进四叉树和比例边界有限元法的自适应设计域拓扑优化方法[J].中国机械工程,2024(05).
蔡丹丹,高玮,王森,杨鹏宇,葛双双,马鹏飞.基于深度学习的软基管廊结构性能预测[J].三峡大学学报(自然科学版),2024(01).
刘钧玉,张天禹,苏艳,陈四利,王淑婷.基于SBFEM研究T应力对岩石起裂特性的影响[J].地下空间与工程学报,2023(S2).
陈敬松.大体积混凝土结构缺陷无损检测方法研究[J].公路,2023(12).
陈灯红,刘云龙,林天成,潘子悦.基于ABAQUS的SBFEM及在混凝土坝非线性地震响应分析中的应用[J].三峡大学学报(自然科学版),2023(05).
许建伟,崔东文.若干新型智能算法优化极限学习机在区域人水和谐度评价中的应用[J].三峡大学学报(自然科学版),2023(02).
张俊奇,余波,宋崇民.比例边界有限元法的最新研究进展[J].应用力学学报,2022(06).
孙立国,江守燕,杜成斌.基于图像四叉树的改进型比例边界有限元法研究[J].力学学报,2022(10).
王轩,顾峰,闵帆,孙远秋.基于代表的交叉验证分类[J].重庆邮电大学学报(自然科学版),2021(05).
江守燕,万晨,孙立国,杜成斌.基于SBFEM和深度学习的裂纹状缺陷反演模型[J].力学学报,2021(10).
杜成斌,李欣竹,田新冉,黄文仓.基于图像四叉树网格的结构动力响应分析[J].三峡大学学报(自然科学版),2021(04).
赵林鑫,江守燕,杜成斌.基于SBFEM和机器学习的薄板结构缺陷反演[J].工程力学,2021(06).
王佳萍,杜成斌,王翔,江守燕.基于XFEM和改进人工蜂群算法的结构内部缺陷反演[J].工程力学,2019(09).
王珍兰,江守燕,杜成斌,储冬冬,陈艳丽.基于频域内动力XFEM和人工蜂群算法反演结构内部缺陷[J].三峡大学学报(自然科学版),2017(03).
Li Jianbo,Liu Jun,Lin Gao.Dynamic interaction numerical models in the time domain based on the high performance scaled boundary finite element method[J].Earthquake Engineering and Engineering Vibration,2013(04).
张伟,师奕兵,王志刚,敖永才.管道裂纹远场涡流检测的定量反演方法研究[J].仪器仪表学报,2013(08).
Amirhossein Moshrefi,Frederic Nabki.Advanced Industrial Fault Detection: A Comparative Analysis of Ultrasonic Signal Processing and Ensemble Machine Learning Techniques[J].Applied Sciences,2024.
Han Xinyue,Yang Yang,Liu Yijun.Determining the defect locations and sizes in elastic plates by using the artificial neural network and boundary element method[J].Engineering Analysis with Boundary Elements,2022.
aff > .On Mean Absolute Error for Deep Neural Network Based Vector-to-Vector Regression[J].IEEE Signal Processing Letters,2020.
Vikas Dwivedi,Nishant Parashar,Balaji Srinivasan.Distributed learning machines for solving forward and inverse problems in partial differential equations[J].Neurocomputing,2020.
Department of Engineering Mechanics, Hohai University, Nanjing, China,Department of Engineering Mechanics, Hohai University, Nanjing, China,Department of Engineering Mechanics, Hohai University, Nanjing, China.An adaptive multiscale approach for identifying multiple flaws based on XFEM and a discrete artificial fish swarm algorithm[J].Computer Methods in Applied Mechanics and Engineering,2018.
Lixuan Zhang,Gang Yang,Dean Hu.Identification of Voids in Structures Based on Level Set Method and FEM[J].International Journal of Computational Methods,2018.
Chunping Ma,Tiantang Yu,Le Van Lich,Tinh Quoc Bui.An effective computational approach based on XFEM and a novel three-step detection algorithm for multiple complex flaw clusters[J].Computers and Structures,2017.
Christoph Buchheim,Jannis Kurtz.Min–max–min robust combinatorial optimization[J].Mathematical Programming,2017.
S.S. Nanthakumar,T. Lahmer,T. Rabczuk.Detection of flaws in piezoelectric structures using extended FEM[J].International Journal for Numerical Methods in Engineering,2013.
Bogue, Robert.New NDT techniques for new materials and applications[J].Assembly Automation,2012.
Ean Tat Ooi,Chongmin Song,Francis Tin‐Loi,Zhenjun Yang.Polygon scaled boundary finite elements for crack propagation modelling[J].International Journal for Numerical Methods in Engineering,2012.
Haim Waisman,Eleni Chatzi,Andrew W. Smyth.Detection and quantification of flaws in structures by the extended finite element method and genetic algorithms[J].International Journal for Numerical Methods in Engineering,2010.
Rabinovich D,Givoli D,Vigdergauz S.Crack identification by 'arrival time' using XFEM and a genetic algorithm[J].International Journal for Numerical Methods in Engineering,2009.
A. Tabarraei,N. Sukumar.Adaptive computations using material forces and residual-based error estimators on quadtree meshes[J].Computer Methods in Applied Mechanics and Engineering,2007.
Petr Krysl,Eitan Grinspun,Peter Schröder.Natural hierarchical refinement for finite element methods[J].International Journal for Numerical Methods in Engineering,2003.
A. J. Deeks,J. P. Wolf.A virtual work derivation of the scaled boundary finite-element method for elastostatics[J].Computational Mechanics,2002.
0
浏览量
50
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621