1. 天水师范大学 电子信息与电气工程学院
2. 天水电气传动研究所集团有限公司
纸质出版:2025
移动端阅览
马保慧, 杨沛年, 卢军祥, 等. 压接式IGBT/ SCR散热方式和优化研究综述[J]. 电力大数据, 2025,(6).
Ma Baohui, Yang Peinian, Lu Junxiang, et al. Review of heat dissipation mode and optimization of crimped IGBT and thyristor[J]. 2025, (6).
压接式绝缘栅双极型晶体管(Insulated ?Gate ?Bipolar ?Transistor,IGBT)与晶闸管(silicon ?controlled ?rectifier,SCR)作为高压大功率电子器件,广泛应用于柔性直流输电(voltage source converter high voltage direct current,VSC-HVDC)与新能源设备中,其热管理性能对器件稳定运行与寿命具有决定性影响。本文系统综述了该类器件典型封装结构与散热路径,深入分析了并联芯片间温度耦合、封装应力与热场互作用等关键问题,为压接式IGBT与SCR的热设计提供了理论依据与工程指导。结合当前研究进展,重点介绍了热网络建模、热阻解析方法及温度场-应力场耦合机制;同时归纳了液冷散热、相变材料散热、微结构翅片散热等先进散热技术在??实际应用中的性能优势及其局限性。最后,展望了基于多物理场模拟和智能控制的热优化技术在高可靠压接器件中的发展趋势。
Press-pack IGBTs and SCR
as critical high-voltage
high-power electronic devices widely utilized in Voltage Source Converter High Voltage Direct Current (VSC-HVDC)transmission systems and renewable energy equipment
exhibit thermal management performance that critically dictates their operational stability and lifetime. This paper provides a systematic review of the typical packaging structures and heat dissipation pathways of such devices
with an in-depth analysis of key issues including thermal coupling between parallel chips
the interaction between packaging stress and thermal field
and other critical aspects. This work offers theoretical foundations and engineering guidance for the thermal design of compression-bonded IGBT and SCR. Based on the current research progress
it focuses on the introduction of thermal network modeling
analytical methods for thermal resistance
and the coupling mechanism between temperature and stress fields. Additionally
it summarizes the performance advantages and limitations of advanced cooling technologies such as liquid cooling
phase change material cooling
and micro-structured fin cooling in practical applications. Finally
it explores the future development trends of multi-physics field simulation and intelligent control-based thermal optimization technologies for high-reliability compression-bonded devices.
张一鸣.压接型IGBT器件内部并联芯片温度分布及耦合特性研究[D].华北电力大学(北京).Zhang Yiming. Study on Temperature Distribution and Coupling Characteristics of Parallel Chips in Press-Pack IGBT Devices [D]. North China Electric Power University (Beijing).?
李广义,张俊洪,高键鑫.大功率电力电子器件散热研究综述[J].兵器装备工程学报,2020,41(11):8-14.
Han J, Li X, An T, et al. Failure analysis and simulation of IGBT under active and passive thermal cycling[J]. Microelectronics Reliability, 2025, 167: 115638.
陆国权,刘文,梅云辉.双面散热SiC MOSFET模块的封装结构强度设计[J].电工电能新技术,2018,37(10):32-38.
罗皓泽,陈忠,杨为,等.压接式IGBT和晶闸管器件失效模式与机理研究综述[J].中国电力,2023,56(05):137-152.
玉尚鑫.基于COMSOL的网状翅片结构晶闸管散热器相变材料热管理研究[D].广西大学.Yu Shangxin. Thermal Management of Phase Change Materials in Mesh-Fin Heat Sinks for Thyristors Based on COMSOL Simulation [D]. Guangxi University.?
Faraji H, Y?ld?z ?, Arshad A, et al. Passive thermal management strategy for cooling multiple portable electronic components: Hybrid nanoparticles enhanced phase change materials as an innovative solution[J]. Journal of Energy Storage, 2023, 70: 108087.
帅双旭.基于电热耦合模型和寿命预测的IGBT可靠性评估[J].电力科学与工程,2021,(6):17-25.
江南,陈民铀,徐盛友,等.计及裂纹损伤的IGBT模块热疲劳失效分析[J].浙江大学学报(工学版),2017,51(04):825-833.
周文鹏,曾嵘,赵彪,等.大容量全控型压接式IGBT和IGCT器件对比分析:原理、结构、特性和应用[J].中国电机工程学报,2022,42(08):2940-2957.
唐新灵.高压大功率压接型IGBT器件并联芯片瞬态电流特性研究[D].华北电力大学(北京),2017.
张以纯.形稳相变材料在电子器件及系统中的热管理与可靠性研究[D].浙江大学,2024.
兰梦伟,姬峰,王成伟,等.大功率器件基板散热技术研究进展[J].电子与封装,2025,25(03):112-126.
李安琦.凸台式与弹簧式压接型IGBT器件的对比研究[D].华北电力大学(北京),2020.
李安琦,邓二平,任斌,等.不同结构压接型IGBT器件压力分布对比[J].中国电力,2019,52(09):11-19+29.
Sun G, Peng C, Wen J, et al. Improvement Heat Dissipation of Flip Chip Double-Sided cooling IGBT Module Using AlSiC-Interposer Technology[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2024.
Zong P, Chen M. Basic Concepts Related to Flexible Electronic Packaging[J]. Flexible Electronic Packaging and Encapsulation Technology, 2024: 33-75.
Cepek M, Krishnayya C P. Thyristor aging[C]//POWERCON''98. 1998 International Conference on Power System Technology. Proceedings (Cat. No. 98EX151). IEEE, 1998, 1: 649-653.
李尧圣. 高压 IGBT短路关断中芯片温升仿真研究[D]. 华北电力大学 (北京), 2016.
杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998.Yang Shiming, Tao Wenquan. Heat Transfer [M]. Beijing: Higher Education Press, 1998.?
Shabany Y. Heat transfer: thermal management of electronics[M]. CRC press, 2009.
Matilainen M. PREVENTING PREMATURE FAILURE OF FREQUENCY CONVERTERS USED IN CYCLIC OPERATION[J]. 2021.
鲍明爽.ITER外旁通柜热电磁多物理场分析[D].华南理工大学,2010.
谢林波.IGBT器件参数的自适应热网络模型分析[J].集成电路应用,2024,41(08):16-18.
严庆,杜明星,胡经纬,等.基于改进双支耦合Cauer模型的逆变器中IGBT模块结温预测方法[J].太阳能学报,2024,45(10):431-439.
Cui H, Zhou M, Yang C, et al. Influence mechanism of solder aging and thermal network model optimization of multi-chip IGBT modules[J]. Microelectronics Reliability, 2022, 139: 114827.
刘江文, 杨道国. IGBT 模块热应力下的分层失效分析[J]. Electronic Components Materials, 2021, 40(9).Liu Jiangwen, Yang Daoguo. Delamination Failure Analysis of IGBT Modules Under Thermal Stress [J]. Electronic Components Materials, 2021, 40(9).?
IGBT 模块失效机理分析[C]//2006 年中国电工技术学会/IEEE 第五届国际电力电子与运动控制会议。IEEE,2006,2:1 - 5。Aide X, Yinhai F, Xinxin W, et al. The Mechanism Analysis of IGBT Module Invalidation[C]//2006 CES/IEEE 5th International Power Electronics and Motion Control Conference. IEEE, 2006, 2: 1-5.
龚灿,孙鹏菊,杜雄,等.基于键合线压降的IGBT模块内部缺陷监测研究[J].电源学报,2016,14(06):153-162.
Huang Y, Luo Y, Xiao F, et al. Failure mechanism of die-attach solder joints in IGBT modules under pulse high-current power cycling[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 7(1): 99-107.
唐勇,汪波,陈明,等.高温下的IGBT可靠性与在线评估[J].电工技术学报,2014,29(06):17-23.
周海峰, 邱颖霞, 鞠金山, 等. 电子设备液冷技术研究进展[J]. Electro-Mechanical Engineering, 2016, 32(4).Zhou Haifeng, Qiu Yingxia, Ju Jinshan, et al. Research Progress in Liquid Cooling Technologies for Electronic Equipment [J]. Electro-Mechanical Engineering, 2016, 32(4).
张 H Y、皮纳拉 D、特奥 P S. 高功率耗散电子封装的热管理:从空气冷却到液体冷却[C]//第五届电子封装技术会议(EPTC 2003)论文集. 美国电气和电子工程师协会,2003:620-625.
Chen Y, Mei Y H, Ning P, et al. Local interconnection degradation of a double-sided cooling SiC MOSFET module under power cycling[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2023, 14(5): 832-840.
Kozak Y, Abramzon B, Ziskind G. Experimental and numerical investigation of a hybrid PCM–air heat sink[J]. Applied Thermal Engineering, 2013, 59(1-2): 142-152.
尹辉斌, 高学农, 丁静, 等. 基于快速热响应相变材料的电子器件散热技术[J]. 华南理工大学学报: 自然科学版, 2007, 35(7): 52-56.
Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management[J]. CIESC Journal, 2023, 74(S1): 25-31.
刘振安,柴牧,高翎玮,等.水冷翅片式固态金属储氢系统传热传质过程模拟与结构优化[J].新能源进展,2024,12(06):704-716.
范振得,陈武,蒋爱国,等.相变控温技术在电子元器件热控中的研究进展[J].应用化工,2023,52(11):3210-3213+3220.
张群, 尚小标, 王文博, 等. 基于 CPCM-液冷-翅片耦合作用的锂电池高温散热性能研究[J]. Journal of Ordnance Equipment Engineering, 2024, 45(4).Zhang Qun, Shang Xiaobiao, Wang Wenbo, et al. High-Temperature Thermal Dissipation Performance of Lithium Batteries Based on CPCM-Liquid Cooling-Fin Coupling Effect [J]. Journal of Ordnance Equipment Engineering, 2024, 45(4).?
Zhao D, Guo C, Li Y, et al. Study of the temperature distribution in insulated gate bipolar transistor module under different test conditions[J]. Microelectronics Reliability, 2023, 140: 114880.
胡广新.翅片式与微流道式散热器散热特性及应用研究[D].电子科技大学,2010.
阿赫马迪安-埃尔米 M、马沙耶基 A、努拉扎尔 S S 等。关于针翅散热器参数优化以改善其热学和水力特性的综合研究[J]。《国际传热传质杂志》,2021 年,第 180 卷:121797。Ahmadian-Elmi M, Mashayekhi A, Nourazar S S, et al. A comprehensive study on parametric optimization of the pin-fin heat sink to improve its thermal and hydraulic characteristics[J]. International Journal of Heat and Mass Transfer, 2021, 180: 121797.
宋全刚, 张晓鸽, 陈本乾, 等. 基于多物理场耦合分析的压接型 IGBT 散热器多目标优化[J]. 工程热物理学报, 2023, 44(3): 761-768.
张 Z,刘 Y,王 J. 新能源汽车电机控制器多通道水冷散热器的优化设计[J]. 中国电机工程学报(英文版),2022,6(1):87 - 94.
贾 H,陈 J,傅 H 等。用于转换器散热器散热状态的智能预测方法[J]。《IEEE 汇刊:访问》,2022 年,11 卷:19103 - 19110。Jia H, Chen J, Fu H, et al. Intelligent prediction method for heat dissipation state of converter heatsink[J]. IEEE Access, 2022, 11: 19103-19110.
刘波, 杨云霄, 朱晔, 等. 功率半导体模块的温控散热器设计方法[J]. 电源学报, 2020, 18(1): 61-67.
焦石, 严治勇, 张健成, 等. 柔性直流输电功率模块的现场智能化检测[J]. 电网与清洁能源, 2021, 37(9): 59-69, 76.
张一鸣.压接型IGBT器件内部并联芯片温度分布及耦合特性研究[D].华北电力大学(北京).Zhang Yiming. Study on Temperature Distribution and Coupling Characteristics of Parallel Chips in Press-Pack IGBT Devices [D]. North China Electric Power University (Beijing).?
李广义,张俊洪,高键鑫.大功率电力电子器件散热研究综述[J].兵器装备工程学报,2020,41(11):8-14.
Han J, Li X, An T, et al. Failure analysis and simulation of IGBT under active and passive thermal cycling[J]. Microelectronics Reliability, 2025, 167: 115638.
陆国权,刘文,梅云辉.双面散热SiC MOSFET模块的封装结构强度设计[J].电工电能新技术,2018,37(10):32-38.
罗皓泽,陈忠,杨为,等.压接式IGBT和晶闸管器件失效模式与机理研究综述[J].中国电力,2023,56(05):137-152.
玉尚鑫.基于COMSOL的网状翅片结构晶闸管散热器相变材料热管理研究[D].广西大学.Yu Shangxin. Thermal Management of Phase Change Materials in Mesh-Fin Heat Sinks for Thyristors Based on COMSOL Simulation [D]. Guangxi University.?
Faraji H, Y?ld?z ?, Arshad A, et al. Passive thermal management strategy for cooling multiple portable electronic components: Hybrid nanoparticles enhanced phase change materials as an innovative solution[J]. Journal of Energy Storage, 2023, 70: 108087.
帅双旭.基于电热耦合模型和寿命预测的IGBT可靠性评估[J].电力科学与工程,2021,(6):17-25.
江南,陈民铀,徐盛友,等.计及裂纹损伤的IGBT模块热疲劳失效分析[J].浙江大学学报(工学版),2017,51(04):825-833.
周文鹏,曾嵘,赵彪,等.大容量全控型压接式IGBT和IGCT器件对比分析:原理、结构、特性和应用[J].中国电机工程学报,2022,42(08):2940-2957.
唐新灵.高压大功率压接型IGBT器件并联芯片瞬态电流特性研究[D].华北电力大学(北京),2017.
张以纯.形稳相变材料在电子器件及系统中的热管理与可靠性研究[D].浙江大学,2024.
兰梦伟,姬峰,王成伟,等.大功率器件基板散热技术研究进展[J].电子与封装,2025,25(03):112-126.
李安琦.凸台式与弹簧式压接型IGBT器件的对比研究[D].华北电力大学(北京),2020.
李安琦,邓二平,任斌,等.不同结构压接型IGBT器件压力分布对比[J].中国电力,2019,52(09):11-19+29.
Sun G, Peng C, Wen J, et al. Improvement Heat Dissipation of Flip Chip Double-Sided cooling IGBT Module Using AlSiC-Interposer Technology[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2024.
Zong P, Chen M. Basic Concepts Related to Flexible Electronic Packaging[J]. Flexible Electronic Packaging and Encapsulation Technology, 2024: 33-75.
Cepek M, Krishnayya C P. Thyristor aging[C]//POWERCON''98. 1998 International Conference on Power System Technology. Proceedings (Cat. No. 98EX151). IEEE, 1998, 1: 649-653.
李尧圣. 高压 IGBT短路关断中芯片温升仿真研究[D]. 华北电力大学 (北京), 2016.
杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998.Yang Shiming, Tao Wenquan. Heat Transfer [M]. Beijing: Higher Education Press, 1998.?
Shabany Y. Heat transfer: thermal management of electronics[M]. CRC press, 2009.
Matilainen M. PREVENTING PREMATURE FAILURE OF FREQUENCY CONVERTERS USED IN CYCLIC OPERATION[J]. 2021.
鲍明爽.ITER外旁通柜热电磁多物理场分析[D].华南理工大学,2010.
谢林波.IGBT器件参数的自适应热网络模型分析[J].集成电路应用,2024,41(08):16-18.
严庆,杜明星,胡经纬,等.基于改进双支耦合Cauer模型的逆变器中IGBT模块结温预测方法[J].太阳能学报,2024,45(10):431-439.
Cui H, Zhou M, Yang C, et al. Influence mechanism of solder aging and thermal network model optimization of multi-chip IGBT modules[J]. Microelectronics Reliability, 2022, 139: 114827.
刘江文, 杨道国. IGBT 模块热应力下的分层失效分析[J]. Electronic Components Materials, 2021, 40(9).Liu Jiangwen, Yang Daoguo. Delamination Failure Analysis of IGBT Modules Under Thermal Stress [J]. Electronic Components Materials, 2021, 40(9).?
IGBT 模块失效机理分析[C]//2006 年中国电工技术学会/IEEE 第五届国际电力电子与运动控制会议。IEEE,2006,2:1 - 5。Aide X, Yinhai F, Xinxin W, et al. The Mechanism Analysis of IGBT Module Invalidation[C]//2006 CES/IEEE 5th International Power Electronics and Motion Control Conference. IEEE, 2006, 2: 1-5.
龚灿,孙鹏菊,杜雄,等.基于键合线压降的IGBT模块内部缺陷监测研究[J].电源学报,2016,14(06):153-162.
Huang Y, Luo Y, Xiao F, et al. Failure mechanism of die-attach solder joints in IGBT modules under pulse high-current power cycling[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 7(1): 99-107.
唐勇,汪波,陈明,等.高温下的IGBT可靠性与在线评估[J].电工技术学报,2014,29(06):17-23.
周海峰, 邱颖霞, 鞠金山, 等. 电子设备液冷技术研究进展[J]. Electro-Mechanical Engineering, 2016, 32(4).Zhou Haifeng, Qiu Yingxia, Ju Jinshan, et al. Research Progress in Liquid Cooling Technologies for Electronic Equipment [J]. Electro-Mechanical Engineering, 2016, 32(4).
张 H Y、皮纳拉 D、特奥 P S. 高功率耗散电子封装的热管理:从空气冷却到液体冷却[C]//第五届电子封装技术会议(EPTC 2003)论文集. 美国电气和电子工程师协会,2003:620-625.
Chen Y, Mei Y H, Ning P, et al. Local interconnection degradation of a double-sided cooling SiC MOSFET module under power cycling[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2023, 14(5): 832-840.
Kozak Y, Abramzon B, Ziskind G. Experimental and numerical investigation of a hybrid PCM–air heat sink[J]. Applied Thermal Engineering, 2013, 59(1-2): 142-152.
尹辉斌, 高学农, 丁静, 等. 基于快速热响应相变材料的电子器件散热技术[J]. 华南理工大学学报: 自然科学版, 2007, 35(7): 52-56.
Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management[J]. CIESC Journal, 2023, 74(S1): 25-31.
刘振安,柴牧,高翎玮,等.水冷翅片式固态金属储氢系统传热传质过程模拟与结构优化[J].新能源进展,2024,12(06):704-716.
范振得,陈武,蒋爱国,等.相变控温技术在电子元器件热控中的研究进展[J].应用化工,2023,52(11):3210-3213+3220.
张群, 尚小标, 王文博, 等. 基于 CPCM-液冷-翅片耦合作用的锂电池高温散热性能研究[J]. Journal of Ordnance Equipment Engineering, 2024, 45(4).Zhang Qun, Shang Xiaobiao, Wang Wenbo, et al. High-Temperature Thermal Dissipation Performance of Lithium Batteries Based on CPCM-Liquid Cooling-Fin Coupling Effect [J]. Journal of Ordnance Equipment Engineering, 2024, 45(4).?
Zhao D, Guo C, Li Y, et al. Study of the temperature distribution in insulated gate bipolar transistor module under different test conditions[J]. Microelectronics Reliability, 2023, 140: 114880.
胡广新.翅片式与微流道式散热器散热特性及应用研究[D].电子科技大学,2010.
阿赫马迪安-埃尔米 M、马沙耶基 A、努拉扎尔 S S 等。关于针翅散热器参数优化以改善其热学和水力特性的综合研究[J]。《国际传热传质杂志》,2021 年,第 180 卷:121797。Ahmadian-Elmi M, Mashayekhi A, Nourazar S S, et al. A comprehensive study on parametric optimization of the pin-fin heat sink to improve its thermal and hydraulic characteristics[J]. International Journal of Heat and Mass Transfer, 2021, 180: 121797.
宋全刚, 张晓鸽, 陈本乾, 等. 基于多物理场耦合分析的压接型 IGBT 散热器多目标优化[J]. 工程热物理学报, 2023, 44(3): 761-768.
张 Z,刘 Y,王 J. 新能源汽车电机控制器多通道水冷散热器的优化设计[J]. 中国电机工程学报(英文版),2022,6(1):87 - 94.
贾 H,陈 J,傅 H 等。用于转换器散热器散热状态的智能预测方法[J]。《IEEE 汇刊:访问》,2022 年,11 卷:19103 - 19110。Jia H, Chen J, Fu H, et al. Intelligent prediction method for heat dissipation state of converter heatsink[J]. IEEE Access, 2022, 11: 19103-19110.
刘波, 杨云霄, 朱晔, 等. 功率半导体模块的温控散热器设计方法[J]. 电源学报, 2020, 18(1): 61-67.
焦石, 严治勇, 张健成, 等. 柔性直流输电功率模块的现场智能化检测[J]. 电网与清洁能源, 2021, 37(9): 59-69, 76.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621