贾睿, 杨国华, 郑豪丰, 张鸿皓, 柳萱, 郁航. 基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法[J]. 中国电力, 2022, 55(5): 47-56, 110. DOI: 10.11930/j.issn.1004-9649.202104023
引用本文: 贾睿, 杨国华, 郑豪丰, 张鸿皓, 柳萱, 郁航. 基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法[J]. 中国电力, 2022, 55(5): 47-56, 110. DOI: 10.11930/j.issn.1004-9649.202104023
JIA Rui, YANG Guohua, ZHENG Haofeng, ZHANG Honghao, LIU Xuan, YU Hang. Combined Wind Power Prediction Method Based on CNN-LSTM&GRU with Adaptive Weights[J]. Electric Power, 2022, 55(5): 47-56, 110. DOI: 10.11930/j.issn.1004-9649.202104023
Citation: JIA Rui, YANG Guohua, ZHENG Haofeng, ZHANG Honghao, LIU Xuan, YU Hang. Combined Wind Power Prediction Method Based on CNN-LSTM&GRU with Adaptive Weights[J]. Electric Power, 2022, 55(5): 47-56, 110. DOI: 10.11930/j.issn.1004-9649.202104023

基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法

Combined Wind Power Prediction Method Based on CNN-LSTM&GRU with Adaptive Weights

  • 摘要: 准确预测风电功率可以提高电网运行的安全性和可靠性。为进一步提高短期风电功率预测精度,针对目前单一模型难以获得最优预测结果的问题,提出一种CNN-LSTM&GRU多模型组合短期风电功率预测方法。首先,利用卷积神经网络(convolutional neural network,CNN)提取数据局部特征,并结合长短期记忆(long short term memory,LSTM)网络构造出融合局部特征预提取模块的CNN-LSTM网络结构;然后,将其与门控循环单元(gated recurrent unit,GRU)网络并行,并通过自适应权重学习模块为CNN-LSTM模块和GRU模块的输出选择最佳权重,构建出CNN-LSTM&GRU组合的短期预测模型。最后,对中国西北某风电场的出力进行预测研究,结果表明:所提模型与单一模型或其他组合模型相比,指标误差更小,预测精度更高。

     

    Abstract: Accurate wind power prediction can improve the safety and reliability of grid operation. To further enhance the accuracy of short-term wind power prediction, this paper proposes a CNN-LSTM&GRU multi-model combined prediction method considering the difficulty in obtaining optimal prediction results with a single model. Firstly, a convolutional neural network (CNN) is used to extract local features of data and combined with a long short-term memory (LSTM) network to construct a CNN-LSTM network structure that incorporates local feature pre-extraction modules. Then, the CNN-LSTM network is paralleled with a gated recurrent unit (GRU) network. An adaptive weight learning module is employed to select the best weights for the outputs of the CNN-LSTM module and the GRU module. In this way, the paper constructs a combined short-term prediction model based on CNN-LSTM&GRU. Finally, the model is applied to the power prediction of a wind farm in northwestern China. The experimental results show that the proposed model has a smaller mean absolute error (MAE), a smaller root mean square error (RMSE), and higher prediction accuracy than single models and other combined models.

     

/

返回文章
返回