Abstract:
To improve the renewable energy consumption and low-carbon economic benefits of the integrated energy system (IES), this paper proposes a multi-time scale coordinated optimal scheduling model for IES that combines power-to-gas (P2G) and carbon capture system (CCS). Firstly, a coupling model of P2G and CCS based on a tiered carbon trading mechanism is established, and an electric-thermal-cooling IES is constructed using multiple energy conversion and storage devices. Secondly, based on the multi-time scale optimization scheduling strategy, an optimal scheduling model is established respectively for three stages including day-ahead, intra-day rolling, and real-time adjustment with energy purchasing costs, operation and maintenance cost, carbon trading cost, and wind and solar curtailment cost as objective function. Finally, a simulation was conducted using a case study of an industrial park in Sichuan. The results demonstrate that the proposed model effectively improves the low-carbon economic benefits, energy utilization efficiency, and system stability of the IES.