易亚文, 赵静朴, 柳灿, 蒋焮焮, 李方玖, 李振兴. 基于改进ED及CM-BPNN算法的保护测量回路误差状态评估方法[J]. 中国电力, 2023, 56(11): 143-150. DOI: 10.11930/j.issn.1004-9649.202308052
引用本文: 易亚文, 赵静朴, 柳灿, 蒋焮焮, 李方玖, 李振兴. 基于改进ED及CM-BPNN算法的保护测量回路误差状态评估方法[J]. 中国电力, 2023, 56(11): 143-150. DOI: 10.11930/j.issn.1004-9649.202308052
YI Yawen, ZHAO Jingpu, LIU Can, JIANG Xinxin, LI Fangjiu, LI Zhenxing. Error Status Evaluation Method for Protection Measurement Circuit Based on Improved ED and CM-BPNN Algorithms[J]. Electric Power, 2023, 56(11): 143-150. DOI: 10.11930/j.issn.1004-9649.202308052
Citation: YI Yawen, ZHAO Jingpu, LIU Can, JIANG Xinxin, LI Fangjiu, LI Zhenxing. Error Status Evaluation Method for Protection Measurement Circuit Based on Improved ED and CM-BPNN Algorithms[J]. Electric Power, 2023, 56(11): 143-150. DOI: 10.11930/j.issn.1004-9649.202308052

基于改进ED及CM-BPNN算法的保护测量回路误差状态评估方法

Error Status Evaluation Method for Protection Measurement Circuit Based on Improved ED and CM-BPNN Algorithms

  • 摘要: 通过对保护测量回路误差状态进行准确评估,能掌握保护装置运行情况并及时发现保护装置存在的隐患。提出了一种基于改进欧氏距离(euclidean distance,ED)及云模型-BP神经网络(cloud model-back propagation neural metwork,CM-BPNN)算法的变电站保护测量回路误差状态评估方法。首先,对测量数据制定不同指标数据的归一化原则;其次,引入改进欧氏距离作为误差评估的启动判据,根据对保护动作性能的影响程度将误差状态进行等级划分并引入云模型计算二级指标的误差状态隶属度;最后,确定每一种误差状态对应的定位映射结果,完成BP神经网络模型的构建,再以此模型进行保护装置电流/电压未知误差状态的评估和定位。基于PSCAD软件搭建220 kV变电站模型,对所提方法的有效性进行验证。

     

    Abstract: The accurate evaluation of the error status of the protection measurement circuit can help to understand the operation status of the protection devices, and to timely and effectively find the hidden dangers of the protection devices. This paper proposes an error status evaluation method for substation protection measurement circuit based on improved ED and CM-BPNN algorithms. Firstly, the normalization principle of different index data is formulated for the measurement data. Secondly, the improved Euclidean distance is introduced as the starting criterion for error evaluation. According to the degree of influence on the performance of the protection action, the error status is graded, and the cloud model is introduced to calculate the error status membership degree of the secondary index. Finally, the positioning mapping results corresponding to each error status are determined, and the BP neural network model is constructed, which is then used to evaluate and locate the unknown error status of the current/voltage of the protection devices. Based on PSCAD software, a 220kV substation model was constructed to verify the effectiveness of the proposed method.

     

/

返回文章
返回