赵化时, 黄耀辉, 宋智强, 许建中, 郑可欣, 梁康康. 含LCC/MMC交直流混联系统的状态估计及不良数据检测[J]. 中国电力. DOI: 10.11930/j.issn.1004-9649.202307020
引用本文: 赵化时, 黄耀辉, 宋智强, 许建中, 郑可欣, 梁康康. 含LCC/MMC交直流混联系统的状态估计及不良数据检测[J]. 中国电力. DOI: 10.11930/j.issn.1004-9649.202307020
ZHAO Huashi, HUANG Yaohui, SONG Zhiqiang, XU Jianzhong, ZHENG Kexin, LIANG Kangkang. State Estimation and Bad Data Detection in Hybrid AC/DC Systems with LCC/MMC[J]. Electric Power. DOI: 10.11930/j.issn.1004-9649.202307020
Citation: ZHAO Huashi, HUANG Yaohui, SONG Zhiqiang, XU Jianzhong, ZHENG Kexin, LIANG Kangkang. State Estimation and Bad Data Detection in Hybrid AC/DC Systems with LCC/MMC[J]. Electric Power. DOI: 10.11930/j.issn.1004-9649.202307020

含LCC/MMC交直流混联系统的状态估计及不良数据检测

State Estimation and Bad Data Detection in Hybrid AC/DC Systems with LCC/MMC

  • 摘要: 基于某地区调度系统导出的CIM/XML文档和CIM/E文档,从数据生成的角度出发,首先将导出文档转化为状态估计原始输入数据,考虑交流系统与LCC、MMC以及LCC与MMC间的相互影响,采用统一迭代法对500 kV子网络进行交直流状态估计建模;其次,在原始量测数据的基础上施加高斯噪声,借助最大化残差检验方法以进行不良数据的检测与辨识;最后,通过仿真数据验证了交直流状态估计模型及不良数据检测与辨识的有效性。

     

    Abstract: Based on the CIM/XML and CIM/E documents exported from the regional dispatching system, this paper focuses on data generation and starts by converting the exported documents into raw input data for state estimation. Considering the interactions between the AC system and LCC, MMC, and between LCC and MMC, the unified iterative method is used to model the AC/DC state estimation of the 500kV subnetwork. Subsequently, the Gaussian noise is added to the original measurement data, and the maximum residual test method is employed for detecting and identifying bad data. Finally, the effectiveness of the proposed models for AC/DC state estimation and the detection and identification of bad data are validated through simulation data.

     

/

返回文章
返回