李刚, 孟坤, 贺帅, 刘云鹏, 杨宁. 考虑特征耦合的Bi-LSTM变压器故障诊断方法[J]. 中国电力, 2023, 56(3): 100-108, 117. DOI: 10.11930/j.issn.1004-9649.202209055
引用本文: 李刚, 孟坤, 贺帅, 刘云鹏, 杨宁. 考虑特征耦合的Bi-LSTM变压器故障诊断方法[J]. 中国电力, 2023, 56(3): 100-108, 117. DOI: 10.11930/j.issn.1004-9649.202209055
LI Gang, MENG Kun, HE Shuai, LIU Yunpeng, YANG Ning. A Bi-LSTM-Based Transformer Fault Diagnosis Method Considering Feature Coupling[J]. Electric Power, 2023, 56(3): 100-108, 117. DOI: 10.11930/j.issn.1004-9649.202209055
Citation: LI Gang, MENG Kun, HE Shuai, LIU Yunpeng, YANG Ning. A Bi-LSTM-Based Transformer Fault Diagnosis Method Considering Feature Coupling[J]. Electric Power, 2023, 56(3): 100-108, 117. DOI: 10.11930/j.issn.1004-9649.202209055

考虑特征耦合的Bi-LSTM变压器故障诊断方法

A Bi-LSTM-Based Transformer Fault Diagnosis Method Considering Feature Coupling

  • 摘要: 电力变压器是保障电力系统安全稳定运行的关键设备之一,而现有故障诊断方法未能充分挖掘设备内部的特征作用关系,对运行状态变化的敏感性较低,在故障诊断准确性和可靠性提升上具有一定的限制。针对上述问题,提出一种考虑特征耦合的双向长短期记忆网络变压器故障诊断方法。首先,根据变压器运行机理确定初始特征状态转移序列;然后,在此基础上构建考虑复杂依赖关系的深度神经网络故障诊断模型,挖掘特征之间的耦合关系,并进行精细化状态评估;最后,通过算例仿真实验验证先验特征序列对故障诊断模型的支撑作用。所提方法提升了故障诊断效果,为电力设备智能化、精细化的运维需求提供了可参考的方案。

     

    Abstract: Power transformer is one of the key equipment to ensure the safe and stable operation of the power system, but the existing fault diagnosis methods cannot fully exploit the feature interaction within the equipment and have poor sensitivity to the changes of operating conditions, which has limited the improvement of fault diagnosis accuracy and reliability. To address the above problems, a transformer fault diagnosis method is proposed based on bi-directional long short-term memory (Bi-LSTM) considering feature coupling. Firstly, the initial transition sequence of feature state is determined based on the equipment operation mechanism; then, a deep neural network fault diagnosis model is constructed with consideration of complex dependencies to mine the feature coupling relationship for refined condition assessment; finally, the simulation results have verified the support role of the priori feature sequence for the fault diagnosis model. The proposed method improves the fault diagnosis effectiveness, and can provide a reference solution for intelligent and refined maintenance of power equipment.

     

/

返回文章
返回