王新刚, 朱彬若, 顾臻. 基于综合能源计量大数据的中长期用电量预测[J]. 中国电力, 2021, 54(10): 211-216. DOI: 10.11930/j.issn.1004-9649.202103108
引用本文: 王新刚, 朱彬若, 顾臻. 基于综合能源计量大数据的中长期用电量预测[J]. 中国电力, 2021, 54(10): 211-216. DOI: 10.11930/j.issn.1004-9649.202103108
WANG Xingang, ZHU Binruo, GU Zhen. Mid-and-Long Term Load Forecasting Based on Integrated Power Consumption Data[J]. Electric Power, 2021, 54(10): 211-216. DOI: 10.11930/j.issn.1004-9649.202103108
Citation: WANG Xingang, ZHU Binruo, GU Zhen. Mid-and-Long Term Load Forecasting Based on Integrated Power Consumption Data[J]. Electric Power, 2021, 54(10): 211-216. DOI: 10.11930/j.issn.1004-9649.202103108

基于综合能源计量大数据的中长期用电量预测

Mid-and-Long Term Load Forecasting Based on Integrated Power Consumption Data

  • 摘要: 用电量预测对智能电网的管理和安全有重要意义。传统方法一般基于历史用电数据本身,而“多表融合”的推广使得多表数据的分析更为便捷。针对用电量预测场景,利用集成智能表采集的水、电、气数据,将用水量与用气量作为特征,提出结合多表数据的中长期用电量预测模型:高斯过程回归(Gaussian process regression,GPR)与相关向量回归(relevance vector regression,RVR)。通过实验结果仿真,验证了所提模型的优势以及综合能源计量数据对用电量预测问题的重要价值。

     

    Abstract: Load forecasting is critical for management and security of smart grid system. Traditional methods are usually on the basis of historical power consumption data, and the popularization of multi-meter integration technology makes analysis of integrated energy consumption data more efficient. Towards the issue of load forecasting, with water/power/gas consumption data collected by integrated smart meter as features, two mid-and-long term power consumption forecasting methods are proposed: gaussian process regression (GPR) and relevance vector regression (RVR). Experimental results show the superiority of the proposed method and the significance of integrated energy consumption data for load forecasting problem.

     

/

返回文章
返回