王威, 王波, 张俊, 陆春良, 贺旭. 宁波地区基于统计升尺度的新能源区域功率预测算法[J]. 中国电力, 2020, 53(5): 100-111. DOI: 10.11930/j.issn.1004-9649.201809133
引用本文: 王威, 王波, 张俊, 陆春良, 贺旭. 宁波地区基于统计升尺度的新能源区域功率预测算法[J]. 中国电力, 2020, 53(5): 100-111. DOI: 10.11930/j.issn.1004-9649.201809133
Wei WANG, Bo WANG, Jun ZHANG, Chunliang LU, Xu HE. New Energy Regional Power Prediction Algorithm Based on Statistical Upscaling in Ningbo Region[J]. Electric Power, 2020, 53(5): 100-111. DOI: 10.11930/j.issn.1004-9649.201809133
Citation: Wei WANG, Bo WANG, Jun ZHANG, Chunliang LU, Xu HE. New Energy Regional Power Prediction Algorithm Based on Statistical Upscaling in Ningbo Region[J]. Electric Power, 2020, 53(5): 100-111. DOI: 10.11930/j.issn.1004-9649.201809133

宁波地区基于统计升尺度的新能源区域功率预测算法

New Energy Regional Power Prediction Algorithm Based on Statistical Upscaling in Ningbo Region

  • 摘要: 为实现电网调度对大规模风电场和光伏站的监控和调度,需要进行新能源区域功率预测。提出了一种基于子区域划分和统计升尺度的区域功率预测算法,通过浙江区域9个风电场和16个光伏站2016年4—9月的历史数据,对比了6种不同的组合方案,发现利用互信息理论,基于最大相关–最小冗余原则累加选取4个代表站点或者直接选取9个代表站点,采用布谷鸟搜索算法训练得到各个代表站点的权重,升尺度得到区域功率预测误差较低,月均方根误差(RMSE)分别为8.51%和7.64%。说明在夏季风盛行时,在浙江区域采用互信息为指标,基于最大相关–最小冗余的原则选取代表站点后,再采用布谷鸟搜索算法得到子区域功率预测值,累加各子区域功率预测结果为最终的区域功率预测结果最优。

     

    Abstract: In order to monitor and dispatch the large-scale wind farms and photovoltaic stations for power grid, it is needed to predict the regional power of new energy. A regional power prediction algorithm is proposed based on sub-region partition and statistical upscaling. According to the historical data of 9 wind farms and 16 photovoltaic stations in Zhejiang province from April to September 2016, six different combination schemes are compared. The mutual information theory (MI) and the minimal redundancy maximal relevance principle (mRMR) are used to accumulatively (mRMR-A) select four representative stations or directly (mRMR-D) select nine representative stations. The weight of each representative site is trained by cuckoo search algorithm, and the regional power is determined by scaling up. It is found that the MI-mRMR-A-CS-4 and MI-mRMR-D-CS-9 algorithms have low prediction errors with their monthly root mean square error being 8.51% and 7.64% respectively. It is concluded that when the summer monsoon is prevalent in Zhejiang region, the representative stations are selected based on mRMR principle with MI used as the index, and then the cuckoo search algorithm is used to obtain the power prediction values of sub-regions, and the cumulative power prediction results of all sub-regions are the best for the final regional power prediction results.

     

/

返回文章
返回