DOI: 10.13334/j.0258-8013.pcsee.212824 文章编号: 0258-8013 (2023) 08-3092-08 中图分类号: TK 16 文献标识码: A

煤粉富氧分级燃烧 NO_x排放特性的实验研究

陈怀俊¹,牛芳^{2*},龚艳艳²,魏琰荣²,王乃继²

(1. 煤炭科学研究总院,北京市 朝阳区 100013; 2. 煤科院节能技术有限公司,北京市 朝阳区 100013)

Experimental Study on NO_x Emission Characteristics of Pulverized Coal Oxygen-enriched Staged Combustion

CHEN Huaijun¹, NIU Fang^{2*}, GONG Yanyan², WEI Yanrong², WANG Naiji²

(1. China Coal Research Institute, Chaoyang District, Beijing 100013, China;

2. China Coal Research Institute Company of Energy Conservation, Chaoyang District, Beijing 100013, China)

ABSTRACT: The development of new ultra-low NO_x pulverized coal combustion technology is one of the effective approaches to achieving the goal of carbon peak and carbon neutrality. In this paper, a two-stage high temperature dropper furnace is used to study the NO_r emission of fractional combustion of pulverized coal under the condition of high temperatures and oxygen-enriched. The experimental results show that either too large or too small secondary air volume is not conducive to suppressing NO generation, and there is an interactive effect of secondary air oxygen concentration and secondary air volume on NO_x emission; and the optimal secondary air oxygen concentration corresponding to the lowest NO_x emission concentration decreases with the increase of the secondary air volume oxygen factor. When the secondary air volume oxygen factor is 0.4~0.5 and the secondary air oxygen concentration is 30%~70%, there are several groups of working conditions where the NO_x emission concentration meets the ultra-low emission requirements, and the carbon content of fly ash is less than 8% at this time. High-temperature oxygen-rich graded combustion can achieve high efficiency combustion of pulverized coal while directly achieving ultra-low NO_x emissions.

KEY WORDS: pulverized coal; NO_x emission; oxy-fuel combustion; air staged combustion; low-nitrogen combustion; burning efficiency

摘要:开发煤粉高效清洁燃烧技术是实现"双碳"目标的有效途径之一。该文利用两段式高温滴管炉,研究煤粉高温富氧分级燃烧条件下 NO_x 排放的规律。结果表明:二次风量过大或过小均不利于抑制 NO 的生成,并且二次风氧气浓度和二次风量对 NO_x 的排放规律存在交互影响; NO_x 排放浓度最低对应的最佳二次风氧气浓度随二次风量氧气系数的增加而减小。当二次风量氧气系数为 0.4~0.5 且二次风氧气浓度为 30%~70%时,存在多组工况 NO_x 排放浓度满足超低

排放要求,并且此时飞灰含碳量均低于 8%。高温富氧分级 燃烧能实现煤粉高效燃烧的同时直接实现 NO_x 的超低排放。

关键词: 煤粉; NO_x排放; 富氧燃烧; 空气分级燃烧; 低氮燃烧; 燃烧效率

0 引言

2021年,我国煤炭消费总量为29.3亿吨标煤, 占能源消费总量的56.0%,煤炭燃烧利用量占煤炭 消费总量的80%以上^[1]。煤燃烧会产生大量SO₂、 NO_x和烟尘等大气污染物,其中NO_x会造成光化学 烟雾、温室效应、雾霾和臭氧层空洞等大气污染^[2]。 我国燃煤锅炉主要通过低氮燃烧技术结合烟气脱 硝技术实现NO_x超低排放的要求,该技术存在燃烧 效率低、投资及运行成本高、催化剂中毒等问题^[3]。 为满足NO_x超低排放的需求,易出现喷氨过量造成 氨逃逸,从而引发空预器换热面出现灰分堆积和板 结,导致空预器堵塞严重,机组高负荷时出力不足, 能量损失大^[3-5]。

为应对上述问题,近年来开发了煤粉预热低 NO_x 燃烧技术^[6]、煤粉无焰燃烧技术^[7]、富氧燃烧 技术^[8]等新型低氮燃烧技术。欧阳子区等^[9-10]研究 表明煤粉流化床低温预热耦合无焰燃烧能有效抑 制 NO_x 的形成,燃用无烟煤时 NO_x 初始排放浓度低 至 103mg/m³(@6%O₂),燃用气化细灰时 NO_x 初始 排放浓度低至 86mg/m³(@6%O₂)。王帅等^[11]研究表 明提高煤粉预热区温度和延长预热区停留时间,可 促进煤中氮 N₂转化,进一步抑制燃料型 NO_x的形 成。张海等^[7]通过煤粉浓缩预热低 NO_x燃烧器实现 了煤粉无焰燃烧的工业应用,燃用无烟煤时 NO_x 排放减少 50%。米建春等^[12-13]对煤粉无焰燃烧进行 了一系列模拟和实验研究,结果表明无焰燃烧不仅 可以抑制燃料型 NO_x和热力型 NO_x形成,还能使锅 炉的整体能效提高 30%以上。

富氧燃烧提高能源效率的同时还能进一步减 少污染物的排放,主要包括 O2/N2 和 O2/CO2 两种富 氧气氛。O2/CO2 富氧燃烧是采用烟气再循环的整体 富氧燃烧技术,烟气中CO2体积分数在80%以上, 是最具前景的 CO2 富集捕捉技术之一。当 O2/CO2 气氛中氧分压为 27%时,水冷壁的传热量与空气燃 烧的传热量相似^[14]。我国应城 35MW 富氧燃烧工 业示范项目 NO_x 的排放浓度大约是常规空气燃烧 的1.54~1.83倍,但NO,排放量仅为空气燃烧的0.38 倍^[15]。O₂/N₂局部富氧燃烧技术介于常规空气燃烧 和 O₂/CO₂ 富氧燃烧之间, O₂/N₂ 富氧燃烧投资和运 行成本较低,更加适合于中小型燃煤锅炉的 NO_x 控制,广泛应用于冶金、玻璃等工业生产中^[16-17]。 Daood 等^[18-19]研究表明在 O₂/N₂ 富氧分级燃烧条件 下,NO 排放量低于常规空气分级燃烧,并且煤粉 的燃尽率也更高。

节能减排是实现我国"双碳"目标的主要途径 之一,开发高效清洁的煤粉燃烧技术尤为重要。富 氧分级燃烧不仅能提高煤粉燃烧效率,而且可以增 加煤粉在还原性气氛下的停留时间,从而降低 NO_x 的初始排放浓度^[19]。本文基于两段式高温滴管炉实 验平台,研究主燃区温度为 1400℃时,二次风过量 氧气系数和二次风氧气浓度对 NO_x 排放的影响规 律,此外还考察了主燃区氧气浓度和空气分级系数 对煤粉燃烧效率的影响规律。

1 实验部分

1.1 实验物料

实验采用的燃料为神府烟煤,为保证微量给粉器供料误差在±0.5%以内,实验前将其置于 50℃的 干燥箱中干燥 6h。干燥后煤粉的元素分析和工业分 析结果如表1所示,粒径分析如图1所示。煤粉挥 发分为 32.24%,氮元素的质量分数为 0.82%,平均

表1 煤粉	的元素分析和工业分析
-------	------------

the purverized coar									
工业八七家			二志八七四					发热量/	
	工业力	191/%		儿糸汀忉1%				(MJ/Kg)	
$V_{\rm ar}$	FC_{ar}	Aar	M _{ar}	C_{ar}	$H_{\rm ar}$	$O_{\rm ar}$	N _{ar}	Sar	$Q_{\rm net,ar}$
32.24	57.88	5.7	4.17	72.98	4.12	11.88	0.82	0.32	24.85

Fig. 1 Particle size distribution curve of coal 粒径为 28.2µm。

1.2 实验设备

两段式滴管炉实验平台由滴管炉主体、温控系 统、给气系统、给料系统、取样分析系统和水循环 系统六部分组成,如图2所示。

图 2 两段式高温滴管炉

Fig. 2 Two-stage high-temperature dropper furnace

滴管炉主体由上段炉体和下段炉体两部分组 成,两段炉体用密封法兰和金属波纹管进行连接。 滴管炉上段炉体使用内径为 50mm、长为 2200mm 的刚玉管,采用碳硅棒元件进行加热,最高可加热 至 1600℃,并有大于 1200mm 的恒温区。滴管炉下 段炉体使用内径为 100mm、长为 1830mm 的不锈钢 管,采用电阻丝加热,最高可加热至 1000℃,并且 有大于 900mm 的恒温区。实验平台所用的给料系 统是由供料器和一次风组成,其中供料器采用日本 Sankyo 制造的微量给粉器,煤粉供料速度为 3.1g/ min,供料误差在±0.004g;一次风携带煤粉进入滴 管炉,本文一次风总量为 1L/min。实验平台给气系 统由二次风和三次风组成,二次风在上段刚玉管的 顶端径向给入,用于主燃区煤粉的助燃;三次风在 滴管炉下段顶端径向给入,为滴管炉下段的燃尽 风。取样分析系统由旋风分离器和烟气分析仪组 成,采用 MGA6 Plus 便携式红外烟气分析仪,对烟 气中的 NO、NO₂、N₂O、O₂、SO₂、CO、CO₂等组 分浓度进行在线测量,NO、NO₂和 N₂O 的测量误 差均为±2ppm,O₂测量误差为±0.2%。

1.3 实验工况

由于二次风采用不同氧气浓度 O₂/N₂ 的混合 气,本文用实际氧气流量和理论完全燃烧所需要的 氧气流量的比值表征氧气量与燃料量的配比关系, 即过量氧气系数,本实验所有工况条件下总过量氧 气系数均为 1.1。一次风和三次风采用标准空气, 氧气浓度为 21%,一次风量均定为 1L/min,一次风 过量氧气系数(*α*₁)为 0.06。本文设置了多组工况研 究二次风氧气浓度和过量氧气系数对 NO_x 生成规 律的影响,所有工况中主燃区温度为 1400℃,燃尽 区温度为 900℃,工况变量为二次风过量氧气系数 (*α*₂)和二次风氧气浓度(*c*₂),具体实验工况参数如 表 2 所示。

表 2 实验工况

	Table	2 Doullary collar	uons			
供料速率/	理论氧气	二次风过量	二次风氧			
(g/min)	流量/(L/min)	氧气系数	气浓度/%			
3.1	4.60	0.3、0.4、0.45、0.5、	15、21、30、35、			
	4.09	0.55、0.6、1.04	40、45、50、60、100			

1.4 数据处理方法

由于本文最高温度为 1400℃, 煤粉燃烧过程中 产生的热力型 NO_x和快速型 NO_x均可忽略不计, 因 此本文只考虑燃料型 NO_x^[20-21]。并且烟气中的 NO_x 主要以 NO 的形式存在, 通过烟气中 NO 排放量计 算煤中氮向 NO_x 的转化率, 通过 NO 排放浓度 (mg/MJ)表征不同富氧工况下 NO_x 排放的绝对量。 在常规空气燃烧条件下, 当烟气中 NO_x 排放的绝对量。 在常规空气燃烧条件下, 当烟气中 NO_x 排放浓度达 到超低排放 50mg/m³(@6%O₂)时, *α*=1.4 且 *c*gas=6%, 按式(1)—(5)计算得到 NO 排放浓度为 13.2mg/MJ, 富氧条件下 NO 排放浓度与该值进行对比, 判断 NO_x排放量是否满足超低排放要求^[9-10]。

$$c = \frac{\alpha}{\alpha_2/c_2 + (\alpha - \alpha_2)/c_0} \tag{1}$$

$$V_1 = V_2 = 22.4\alpha m \left(\frac{C_{\rm ar}}{12} + \frac{H_{\rm ar}}{4} + \frac{S_{\rm ar}}{32} - \frac{O_{\rm ar}}{32}\right)/c \quad (2)$$

$$NO_{x} = \frac{46}{22.4} \frac{21 - 6}{21 - c_{gas}} NO_{W}$$
(3)

$$\eta_{\rm NO} = \frac{\rm NO}{22.4 \frac{\rm m}{\rm V_2} \frac{\rm N_{ar}}{\rm 14} 10^4}$$
(4)

$$NO_{\# \dot{n} \ddot{n} \ddot{n} \ddot{n} \ddot{n} \ddot{n}} = \eta_{NO} N_{ar} \frac{30}{14} 10^6 / Q_{net,ar}$$
(5)

式中: *c* 为整体折算氧气浓度,%; *c*₀ 为空气中氧 气浓度,%; *c*_{gas} 为烟气中氧气浓度;m 为供料量, g/min; *V*₁ 为实际进气量,L/min; *V*₂ 为实际烟气量, L/min; NO ³⁸为烟气分析仪测得的 NO 排放浓度, ppm; η_{NO} 为煤中 N 氧化生成 NO 的比例即 NO 转 化率,%。NO _{排放浓度}为 NO 折算后的绝对排放浓度, mg/MJ;

2 实验结果及分析

2.1 未分级条件下 NO 排放规律

煤粉燃烧过程中 HCN、NH₃和 HNCO 等挥发 分 N 被氧化形成挥发分 NO_x, 焦炭 N 被氧化形成 焦炭 NO_x, 同时 NH₃、HCN、CH₄、CO、煤焦等都 将烟气中的 NO_x还原成 N₂。燃料型 NO_x是煤中 N 氧化和 NO_x还原两个反应竞争的结果,即使在未分 级条件下也有大量燃料 N 通过"氧化-还原"最终 转化为 N₂^[22-24]。

图 3 为未分级条件下,二次风氧气浓度对 NO的排放规律的影响。二次风氧气浓度从 15%升高到 100%,烟气中 NO 的排放浓度呈线性递增,从 191.7mg/MJ 升至 261.4mg/MJ,NO 排放浓度升高 69.7mg/MJ; NO 转化率随着二次风氧气浓度升高而 增大,NO 转化率从 27.1%升至 37.0%,NO 转化率 增加了 9.9%。在氧化性气氛中增加氧气浓度会促进 燃料 N 向 NO 的转化,从而提高烟气中 NO 的排放 浓度^[19,25]。

Fig. 3 NO emission pattern under unclassified conditions

2.2 二次风过量氧气系数对 NO 排放浓度的影响

煤热解阶段部分燃料 N 会随挥发分的析出以 NH3、HCN 和 HNCO 等形式析出, 焦炭表面的 HCN 和 NH3 能在火焰峰面处被氧化生成 NO, 也能将火 焰峰面扩散进来的 NO 还原成 N2, 燃烧气氛中的 氧气浓度对燃料N转化有很大影响^[19,22]。在强还原 性条件下, 焦炭可以通过自身的还原性直接还原 NO_x,还能为NH3、CO等还原NO_x提供反应表面, 并且耦合还原能力高于各自的还原能力[26-27]。空气 分级燃烧可有效抑制煤粉燃烧初期挥发分 NO_x 的 形成,尤其对高挥发分的褐煤和烟煤^[28-29]。主燃区 局部富氧不仅可以提高煤粉燃烧强度,促进煤粉燃 烧,同时还能加速 O2 的消耗,进一步扩大还原性 区间,延长煤粉在还原性区的停留时间^[19]。本文研 究二次风过量氧气系数对煤粉 NO 排放浓度的影 响,NO 排放浓度随二次风过量氧气系数的变化如 图4所示。

图 4 二次风过量氧气系数对 NO 排放浓度的影响规律 Fig. 4 Effect pattern of secondary air excess oxygen ratio t on NO emission concentration

实验结果表明,在不同二次风氧气浓度下均存 在一个最佳的二次风过量氧气系数区间,二次风过 量氧气系数过大或过小均不利于减少 NO_x的排放。 二次风过量氧气系数过大时,主燃区处于弱氧化性 气氛,不利于挥发分 NO 的还原;当二次风过量氧 气系数较小时,不利于煤粉燃尽,并且大量焦炭 NO_x在燃尽区中生成,导致烟气中 NO 排放浓度提 高^[30-31]。未分级时,NO 排放浓度都高于 191.7mg/ MJ,并且 NO 排放浓度随二次风氧气浓度的升高而 升高;而α₂=0.3~0.6 时,NO 排放浓度随二次风过 量氧气系数的增加呈先缓慢降低后缓慢升高的趋 势,NO 排放浓度均低于 55.8mg/MJ。随着二次风 氧气浓度增加,NO_x排放浓度最低时对应的二次风 加到 100%时,最佳二次风过量氧气系数从 0.55 减至 0.4。

当 c₂=21%时,二次风过量氧气系数 0.55 附近, NO 排放浓度达到最低值,这与文献[21]的研究结论 一致。NO 排放浓度最低值为 18.8mg/MJ,并未达 到超低排放要求(13.2mg/MJ),但 NO 转化率仅为 2.65%,低氮效果显著。这主要是由于煤粉气流在 还原性区间的停留时间较长,导致挥发分 N 的被充 分转化成 N₂,并且高温强还原性气氛也能促进焦炭 N 释放并转换成 N₂^[28-29]。

相较于常规空气分级燃烧,富氧分级燃烧能进 一步降低 NO 排放浓度,并且部分工况条件下 NO 排放量满足超低排放要求,主要是由于提高二次风 氧气浓度能加速氧的消耗扩大还原性区间,并且烟 气流速降低也延长了烟气在还原性区间的停留时 间,促进烟气中 NO_x的还原^[27,31]。当 *c*₂=30%且 *a*₂=0.5 时,NO 排放浓度为 11.5mg/MJ;当 *c*₂=50% 且*a*₂=0.4 时,NO 排放浓度为 12.7mg/MJ,均能满 足 NO_x 超低排放。

2.3 二次风氧气浓度对 NO 排放浓度的影响

二次风氧气浓度对 NO 排放的影响与主燃区过 量氧气系数有关,当二次风过量氧气系数较低时, 主燃区整体处于强还原性气氛,提高二次风氧气浓 度能进一步减低 NO_x的排放^[32];当二次风过量氧气 系数过高时,主燃区整体处于弱氧化性气氛,提高 二次风氧气浓度会促进 NO 的生成^[27,31]。孙锐^[33]等 研究表明氧气浓度增加导致 CO₂和 H₂O 浓度升高, 焦炭气化作用增强,有利于煤中 N 的释放和 NO_x 的还原。本实验研究煤粉富氧分级燃烧条件下,二 次风氧气浓度对 NO 排放浓度的影响,实验结果如 图 5 所示。

(C)1994-2023 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

可知,当α₂=0.3 时,NO 排放浓度随二次风氧 气浓度的升高而减小,二次风氧气浓度从15%增加 到100%时,NO排放浓度从45.2mg/MJ降至21.6mg/ MJ, NO 排放浓度降低 52.2%。当α2=0.4、0.5 时, NO 排放浓度均随二次风氧气浓度升高呈现先减小 后增大的趋势,NO 排放浓度最低对应的二次风氧 气浓度值随二次风过量氧气系数的增加呈减小的 趋势。a2=0.4 对应的最佳二次风氧气浓度为 60% 左 右,并且此时 NO 排放浓度为 11.5mg/MJ; α2=0.5 时,二次风氧气浓度在 30%~45%, NO 排放浓度均 低于 13.2mg/MJ, NO 排放浓度满足 NO 超低排放 需求,最佳二次风氧气浓度为40%左右,此时 NO 排放浓度为 9.5mg/MJ。当 a2=0.6 时, NO 排放浓度 随二次风氧气浓度的升高而增大,提高二次风氧气 会促进 NO 的生成,浓度二次风氧气浓度从 15% 增 加到100%, NO排放浓度从25.0mg/MJ增至55.8mg/ MJ, NO 排放浓度增幅达到 123%。

2.4 NO2和 N2O 的排放规律

烟气中的 NO₂ 主要由 NO 进一步氧化形成,烟 气中 NO 浓度能直接影响 NO₂ 的排放浓度,同时温 度、氧气浓度等也会影响 NO 向 NO₂ 的转化,本文 通过 NO₂/NO_x 的比值表征 NO 进一步氧化的难易程 度,即 NO₂ 占比。煤粉燃烧过程中 NO₂ 生成途径包 括以下 3 个路径:

$$O_2 + 2NO \rightarrow 2NO_2 \tag{6}$$

$$O + NO \rightarrow C() + NO_2 \tag{7}$$

$$O + C(O) \rightarrow C() + NO_2$$
(8)

式中: C()为活性碳位点; C(O)、C(NO)为焦炭表面 碳氧化合物和碳氮化合物。其中反应式(6)是 NO₂ 生成的主要路径,提高主燃区温度能抑制式(6)的 进行^[22,34]。

图 6 为相同二次风系数条件下,二次风氧气浓 度对 NO₂ 排放浓度和 NO₂ 占比的影响规律。在未分 级条件下,NO₂ 排放浓度和 NO₂ 占比均随二次风氧 气浓度的升高而增大,当二次风氧气浓度从 15%增 加到 100%时,NO₂ 排放浓度从 1.6mg/MJ 增加至 12.3mg/MJ,NO₂ 占比从 0.3%增加至 2.3%。主要是 由于在未分级条件下,二次风氧气浓度升高不仅可 以促进燃料 N 氧化形成 NO,还能促进 NO 进一步 氧化形成 NO₂。在分级条件下(*α*₂<0.6),NO₂ 的排 放浓度均低于 0.2mg/MJ,NO₂ 占比均低于 0.3%, NO₂ 的排放可以忽略不计。主要是由于在高温还原 性条件下, 焦炭表面 C(O)和 C(NO)都极易脱附形成 CO 和 NO, 从而抑制 NO 异相的氧化形成 NO₂, 反 应式(6)-(8)都很难发生^[22]。

煤粉燃烧烟气中N2O主要来源于NO的还原反

应, N₂O 的形成包括以下 3 个反应路径:

 $NH + NO \rightarrow N_2O + H$ (9)

$$NCO + NO \rightarrow N_2O + CO \tag{10}$$

 $NO + C(NO) \rightarrow C(O) + N_2O$ (11)

本文通过 N₂O/NO_x 的比值表征 NO 还原形成 N₂O 的难易程度,即N₂O 占比。在低温条件下C(NO) 经脱附反应是煤中 N 氧化的速控步,大量 C(NO) 富集在焦炭表面,通过式(11)促进 N₂O 的生成,并 且焦炭在低温条件下对 N₂O 的还原能力较弱,最终 导致烟气中 N₂O 的浓度较高^[35]。随着温度升高,反 应式(10)是均相还原 NO 形成 N₂O 的主要反应,但 当温度过高时,式(10)受阻,并且 N₂O 的分解速率 加快, N₂O 的生成量减少^[22]。

图 7 为相同二次风氧气浓度条件下,二次风过 量氧气系数对 N₂O 排放浓度和 N₂O 占比的变化规 律。N₂O 排放浓度随二次风过量氧气系数的增加呈 先下降后升高的趋势,主要是由于二次风过量氧气 系数过低时,烟气中的 NO 易进一步还原形成 N₂O,导致烟气中 N₂O 排放浓度偏高;当二次风过量氧气系数过高时,烟气中 NO 的浓度过高也会导致 N₂O 的排放浓度偏高。

Fig. 7 N₂O emission characteristics

由图 7(a)可知,当 a₂=0.4~0.6 时,N₂O 的排放 浓度都相对较低,并且提高二次风氧气浓度能进一 步降低 N₂O 的排放浓度。在未分级条件下,N₂O 排 放浓度和 N₂O 占比受二次风氧气浓度变化的影响 较小,N₂O 排放浓度在(2.6±0.1)mg/MJ,N₂O 占比 均低于 0.7%。在分级条件下,N₂O 排放浓度和 N₂O 占比均随二次风氧气浓度的升高而降低,并且随二 次风过量氧气系数减小,二次风氧气浓度变化对 N₂O 排放的影响增大。

2.5 煤粉燃烧效率

煤粉燃烧效率主要由烟气中未完全燃烧的可 燃气体和飞灰中未燃尽的碳决定。本文所有工况条 件下,CO的排放体积浓度的均低于 0.05%,烟气 中未完全燃烧的可燃气体可忽略不计,仅考虑飞灰 含碳量对煤粉燃烧效率的影响。

图 8 为相同二次风氧气浓度条件下,飞灰含碳 量随二次风过量氧气系数的变化规律。飞灰含碳量 随二次风过量氧气系数的增加而不断减少,同时提 高二次风氧气浓度也能提高煤粉燃烧效率。*α*₂=0.3 时,飞灰含碳量均高于 12.9%,提高氧气浓度能提高煤粉燃烧效率,二次风氧气浓度从 21%升高至 50%,飞灰含碳量从 27.8%降至 12.9%,飞灰含碳量依旧很高,这与车德福^[36]等的研究结论一致。当 二次风过量氧气系数大于 0.4 时,不同工况下飞灰 含碳量均低于 8%,煤粉燃烧效率较高。

secondary air on the residual carbon of fly ash

3 结论

本文主要研究了神府烟煤高温富氧燃烧条件下,二次风过量氧气系数和二次风氧气浓度等因素对NO_x 排放的影响。主要结论如下:

1) 高温富氧分级燃烧能实现煤粉高效燃烧的 同时直接实现 NO_x的超低排放。当 α_2 =0.5 且 c_2 =40% 时, NO 排放浓度仅为 9.5mg/MJ,飞灰含碳量远低 于 8%。

2)二次风过量氧气系数和二次风氧气浓度对 NO 生成存在交互影响。在不同的二次风氧气浓度 下,均存在一个最佳二次风过量氧气系数区间,最 佳二次风过量氧气系数随二次风氧气浓度的升高 而减小。在不同二次风过量氧气系数下,同样存在 一个最佳二次风氧气浓度区间,该区间随二次风过 量氧气系数的增加而降低。

3) 高温富氧分级燃烧条件下,不同二次风氧 气浓度下 NO₂ 排放浓度均低于 0.2mg/MJ,可以忽 略不计。N₂O 的排放浓度随二次风过量氧气系数的 升高先降低后升高,增大二次风过量氧气系数或提 高二次风氧气浓度均能抑制 N₂O 生成。

参考文献

 [1] 中华人民共和国国家统计局.中华人民共和国 2021 年 国民经济和社会发展统计公报[EB/OL]. (2022-02-28). http://www.stats.gov.cn/tjsj/zxfb/202202/t20220227_1827 960.html. National Bureau of Statistics of the People's Republic of China. Statistical Bulletin on National Economic and Social Development of the People's Republic of China in 2021[EB/OL]. (2022-02-28). http://www.stats.gov.cn/tjsj/ zxfb/202202/t20220227_1827960.html(in Chinese).

 [2] 吕清刚,李诗媛,黄粲然.工业领域煤炭清洁高效燃烧
 利用技术现状与发展建议[J].中国科学院院刊,2019, 34(4): 392-400.

LV Qinggang, LI Shiyuan, HUANG Canran. Current situation and development suggestions of coal clean and efficient combustion technology in industry field[J]. Bulletin of the Chinese Academy of Sciences, 2019, 34(4): 392-400(in Chinese).

- [3] 朱法华,张静怡,徐振.我国工业烟气治理现状、困境及建议[J].中国环保产业,2020(10):13-16.
 ZHU Fahua, ZHANG Jingyi, XU Zhen. Current situation and predicament of china's industrial flue gas treatment and relevant suggestions[J]. China Environmental Protection Industry, 2020(10): 13-16(in Chinese)
- [4] CHEN Yin, LIAO Yanfen, CHEN Lin, et al. Performance of transition metal(Cu, Fe and Co) modified SCR catalysts for simultaneous removal of NO and volatile organic compounds(VOCs) from coal-fired power plant flue gas[J]. Fuel, 2021(289): 119849.
- [5] SUN Yongxia, ZWOLIŃSKA E, CHMIELEWSKI A G. Abatement technologies for high concentrations of NO_x and SO_2 removal from exhaust gases: A review[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(2): 119-142.
- [6] OUYANG Ziqu, DING Hongliang, LIU Wen, et al. Effect of the staged secondary air on NO emission of pulverized semi-coke flameless combustion with coal preheating technology[J]. Fuel, 2021(291): 120137.
- [7] ZHANG Hai, YUE Guangxi, LU Junfu, et al. Development of high temperature air combustion technology in pulverized fossil fuel fired boilers[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2779-2785.
- [8] ZHA Qiongliang, BU Yufan, WANG Chang'an, et al. Evaluation of anthracite combustion and NOx emissions under oxygen-staging, high-temperature conditions[J]. Applied Thermal Engineering, 2016(109): 751-760.
- [9] LIU Wen, OUYANG Ziqu, NA Yongjie, et al. Effects of the tertiary air injection port on semi-coke flameless combustion with coal self-preheating technology[J]. Fuel, 2020(271): 117640.
- [10] 欧阳子区,朱建国,吕清刚.无烟煤粉经循环流化床预 热后燃烧特性及 NO_x 排放特性实验研究[J].中国电机 工程学报,2014,34(11):1748-1754.
 OUYANG Ziqu, ZHU Jianguo, LV Qinggang.

Experimental study on combustion and NO_x emission of pulverized anthracite coal preheated by a circulating fluidized bed[J]. Proceedings of the CSEE, 2014, 34(11): 1748-1754(in Chinese).

[11] 王帅, 龚彦豪, 牛艳青, 等. 煤粉预热 - 燃烧耦合过程中 NO 生成研究[J]. 中国电机工程学报, 2020, 40(9): 2951-2959.
WANG Shuai, GONG Yanhao, NIU Yanqing, et al. Study on NO formation during preheating-combustion coupling of pulverized coal[J]. Proceedings of the CSEE, 2020,

40(9): 2951-2959(in Chinese).
[12] 熊彪,李鹏飞,郭军军,等.半焦掺混煤粉 MILD 燃烧 的数值模拟及分析[J]. 燃烧科学与技术, 2018, 24(5): 407-412.
XIONG Biao, LI Pengfei, GUO Junjun, et al. Numerical simulation and analysis of MILD combustion of residual

char blended with pulverized coal[J]. Journal of Combustion Science and Technology, 2018, 24(5): 407-412(in Chinese).

- [13] 梅振锋,张健鹏,米建春. 煤粉 MILD 燃烧的数值模型 优化[J]. 中国电机工程学报,2016,36(19): 5245-5253.
 MEI Zhenfeng, ZHANG Jianpeng, MI Jianchun.
 Optimization of numerical models of MILD combustion for pulverized coal[J]. Proceedings of the CSEE, 2016, 36(19): 5245-5253(in Chinese).
- [14] GUO Junjun, LIU Zhaohui, HUANG Xiaohong, et al. Experimental and numerical investigations on oxy-coal combustion in a 35MW large pilot boiler[J]. Fuel, 2017(187): 315-327.

[15] 郭军军,张泰,李鹏飞,等.中国煤粉富氧燃烧的工业 示范进展及展望[J].中国电机工程学报,2021,41(4): 1197-1208.
GUO Junjun, ZHANG Tai, LI Pengfei, et al. Industrial demonstration progress and trend in pulverized coal oxy-fuel combustion in China[J]. Proceedings of the CSEE, 2021, 41(4): 1197-1208(in Chinese).

- [16] MENG Fanrui, YU Jianglong, TAHMASEBIA, et al. Pyrolysis and combustion behavior of coal gangue in O₂/CO₂ and O₂/N₂ mixtures using thermogravimetric analysis and a drop tube furnace[J]. Energy & Fuels, 2013, 27(6): 2923-2932.
- [17] WU Kuokuang, CHANG Yucheng, CHEN C H, et al. High-efficiency combustion of natural gas with 21-30% oxygen-enriched air[J]. Fuel, 2010, 89(9): 2455-2462.
- [18] DAOOD S S, NIMMO W, EDGE P, et al. Deep-staged, oxygen enriched combustion of coal[J]. Fuel, 2012(101): 187-196.
- [19] FAN Weidong, LI Yu, GUO Qinghong, et al. Coalnitrogen release and NO_x evolution in the oxidant-staged combustion of coal[J]. Energy, 2017(125): 417-426.

- [20] WANG Xuebin, SI Jipeng, TAN Houzhang, et al. Kinetics investigation on the reduction of NO using straw char based on physicochemical characterization[J]. Bioresource Technology, 2011, 102(16): 7401-7406.
- [21] 杨石.两段式滴管内烟煤富氧空气分级燃烧 NO_x 排放 特性研究[J]. 洁净煤技术, 2020, 26(2): 102-108.
 YANG Shi. Research on NOx emission characteristics of bituminous coal with oxygen enriched air staged combustion in two-stage dropper tube furnace[J]. Clean Coal Technology, 2020, 26(2): 102-108(in Chinese).
- [22] GLARBORG P, MILLER J A, RUSCIC B, et al. Modeling nitrogen chemistry in combustion[J]. Progress in Energy and Combustion Science, 2018(67): 31-68.
- [23] WANG Yongqing, ZHOU Yuegui, BAI Nuomin, et al. Experimental investigation of the characteristics of NO_x emissions with multiple deep air-staged combustion of lean coal[J]. Fuel, 2020(280): 118416.
- [24] 吕俊复,柯希玮,蔡润夏,等.循环流化床燃烧条件下 焦炭表面 NO_x还原机理研究进展[J].煤炭转化,2018, 41(1): 1-12.

LV Junfu, KE Xiwei, CAI Runxia, et al. Research progress on the kinetics of NO_x reduction over chars in fluidized bed combustion[J]. Coal Conversion, 2018, 41(1): 1-12(in Chinese).

- [25] XU Jie, SUN Rui, ISMAIL T M, et al. Effect of oxygen concentration on NO formation during coal char combustion[J]. Energy & Fuels, 2017, 31(7): 7502-7509.
- [26] FAN Weidong, WU Xiaofeng, GUO Hao, et al. Experimental study on the impact of adding NH3 on NO production in coal combustion and the effects of char, coal ash, and additives on NH3 reducing NO under high temperature[J]. Energy, 2019(173): 109-120.
- [27] FAN Weidong, YU Lu, MENG Xeng. Effect of preoxidation O₂ concentration on the reduction reaction of NO by char at high temperature[J]. Industrial & Engineering Chemistry Research, 2013, 52(18): 6101-6111.
- [28] YANG Jiancheng, SUN Rui, SUN Shaozeng, et al. Experimental study on NO_x reduction from staging combustion of high volatile pulverized coals. Part 1. Air staging[J]. Fuel Processing Technology, 2014(126): 266-275.
- [29] WANG Junchao, FAN Weidong, LI Yu, et al. The effect of air staged combustion on NO_x emissions in dried lignite combustion[J]. Energy, 2012, 37(1): 725-736.
- [30] 王道平,尚庆雨,牛芳.两段式高温滴管炉内烟煤 NO_x

生成规律[J]. 煤炭学报, 2017, 42(12): 3300-3304. WANG Daoping, SHANG Qingyu, NIU Fang. NO_x formation of bituminous coal in two-stage high-temperature dropper tube furnace[J]. Journal of China Coal Society, 2017, 42(12): 3300-3304(in Chinese).

- [31] HE Yizhuo, ZHENG Xiaochuan, LUO Jianghui, et al. Experimental and numerical study of the effects of steam addition on NO formation during methane and ammonia oxy-fuel combustion[J]. Energy & Fuels, 2017, 31(9): 10093-10100.
- [32] ZHA Qiongliang, ZHAO Jing, WANG Chang'an, et al. Rapid pyrolysis and CO₂ gasification of anthracite at high temperature[J]. Journal of the Energy Institute, 2018, 91(6): 1143-1152.
- [33] LI Yupeng, SUN Rui, WANG Min, et al. Effect of stoichiometric ratio on char-nitrogen conversion under high-temperature entrained flow combustion conditions[J]. Energy & Fuels, 2018, 32(5): 6098-6110.
- [34] LIU Changchun, HUI Shien, ZHANG Xiaolu, et al. Influence of type of burner on NO emissions for pulverized coal preheating method[J]. Applied Thermal Engineering, 2015(85): 278-286.
- [35] 苗苗,张缦,吕俊复,等.流化床燃烧中 N₂O 生成机 理与减排技术[J].清华大学学报(自然科学版),2020, 60(6): 507-517.

MIAO Miao, ZHANG Man, LV Junfu, et al. N_2O formation mechanism and control in circulating fluidized beds[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(6): 507-517(in Chinese).

[36] ZHU Tao, HU Yueyi, TANG Chunli, et al. Experimental study on NO_x formation and burnout characteristics of pulverized coal in oxygen enriched and deep-staging combustion[J]. Fuel, 2020(272): 117639.

在线出版日期: 2022-07-01。 收稿日期: 2021-11-08。 作者简介:

陈怀俊(1996),男,硕士研究生,主要研究方向为煤炭清洁高效燃烧, chhuaijun@163.com;

陈怀俊

*通信作者:牛芳(1987),女,副研究员, 主要从事煤炭清洁高效利用方面的研究, nf37@163.com。

(编辑 胡琳琳)

Experimental Study on NO_x Emission Characteristics of Pulverized Coal Oxygen-enriched Staged Combustion

CHEN Huaijun¹, NIU Fang², GONG Yanyan², WEI Yanrong², WANG Naiji²

(1. China Coal Research Institute; 2. China Coal Research Institute Company of Energy Conservation)

Keywords: NO_x emission; oxy-fuel combustion; air staged combustion; low-nitrogen combustion; burning efficiency

The development of new ultra-low NO_x pulverized coal combustion technology is one of the effective approaches to achieving the goal of carbon peaking and carbon neutrality. This paper investigates the effect of secondary air excess oxygen coefficient and secondary air oxygen concentration on NO_x emission and pulverized coal combustion efficiency under the working condition of 1400 °C in the main combustion zone using two-stage high temperature drip tube furnace.

In the pyrolysis stage of coal, part of the coal-N will be precipitated as NH₃, HCN and HNCO with the precipitation of volatile fraction. HCN and NH₃ on the surface of coke can be oxidized at the flame peak to generate NO, and also reduce the NO diffused in at the flame peak to N₂. The concentration of oxygen in the combustion atmosphere has a significant effect on the coal-N conversion. Fig. 1 shows the influences of NO emission concentration with the secondary air excess oxygen coefficient. There is an optimal secondary air excess oxygen coefficient interval under different secondary air oxygen concentrations, and either too large or too small secondary air excess oxygen is not conducive to reducing NO emission. When $c_2=30\%$ and $\alpha_2=0.5$, the NO emission concentration is 11.5mg/MJ, which can meet the requirement of ultra-low NO_x emission.

The combustion efficiency of pulverized coal is mainly determined by the incompletely burned combustible gases in the flue gas and the unburned carbon in the fly ash. Fig. 2 shows the variation law of fly ash carbon content with secondary air excess oxygen coefficient. The carbon content of fly ash decreases continuously with the increase of secondary air excess oxygen coefficient, while increasing the secondary air oxygen concentration can also improve the pulverized coal combustion efficiency. When the secondary air

Fig. 2 Influences of the excess oxygen ratio of the secondary air on the residual carbon of fly ash

excess oxygen coefficient is greater than 0.4, the carbon content of fly ash is lower than 8% at different secondary air oxygen concentrations.

The simulation study shows that, high temperature oxygen-enriched graded combustion can achieve high efficiency combustion of pulverized coal while directly achieving ultra-low NO_x emissions. At different secondary air oxygen concentrations, the NO emission concentration decreases slowly and then increases sharply with the increase of secondary air excess oxygen factor, and the optimal secondary air excess oxygen factor decreases with the increase of secondary air oxygen concentration.