DOI: 10.13334/j.0258-8013.pcsee.201367 文章编号: 0258-8013 (2021) 08-2757-14 中图分类号: TK 229 文献标志码: A

循环流化床锅炉 NOx 生成和排放特性研究进展

柯希玮1, 张缦1*, 杨海瑞1, 吕俊复1, 郭学茂2, 李军2, 贺辉宝2

(1. 热科学与动力工程教育部重点实验室(清华大学能源与动力工程系),北京市 海淀区 100084;2. 太原锅炉集团有限公司,山西省 太原市 030000)

Research Progress on the Characteristics of NO_x Emission in Circulating Fluidized Bed Boiler

KE Xiwei¹, ZHANG Man^{1*}, YANG Hairui¹, LYU Junfu¹, GUO Xuemao², LI Jun², HE Huibao²

(1. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education

(Department of Energy and Power Engineering, Tsinghua University), Haidian Distinct, Beijing 100084, China;

2. Taiyuan Boiler Group Co. Ltd., Taiyuan 030000, Shanxi Province, China)

ABSTRACT: The NO_x emission of the circulating fluidized bed (CFB) boiler is not only affected by the fuel properties, but also closely related to the combustor performance and operation conditions. It is important to study the relationship between NOx emission and several design or operation parameters, which is also the key to realize the de-NO_x combustion in engineering for a CFB boiler. Under a specific boiler load and for a selected fuel type, several engineering methods were proved to have significant effects on the reduction of NO_x emission, such as improving the performance of circulating loop including improving cyclone efficiency, appropriately decreasing the size of feeding coal and limestone particles, adjusting the air staging and controlling the oxygen content in furnace, controlling the bed temperature and bed pressure drop in reasonable range, improving the uniformity of air and coal injection, etc., This paper reviewed the NOx formation and reduction mechanism under CFB combustion conditions, and summarized the effects of several design or operation parameters on the NOx emission. The principles of some main de-NO_x combustion technologies were also analyzed. Finally, the key scientific issues and the future research directions related with NOx emission of CFB combustion technology were discussed.

KEY WORDS: circulating fluidized bed; NO_x; influencing factors; low-NO_x combustion; research progress

摘要: 循环流化床(circulating fluidized bed, CFB)锅炉 NO_x 的生成和排放特性不仅与燃料性质有关,更与燃烧设备的性能和运行条件紧密关联。了解 NO_x 排放与各设计或运行参数间的变化关系,是工程上实现 CFB 锅炉低氮燃烧的关键

所在。在给定的燃料和锅炉负荷下,提高分离器效率、改善循环系统性能、合理分级配风和氧量调节、调整给煤粒度和 石灰石粒度、合适的床温床压选择、提高风煤混合均匀性等 措施,可以有效降低 NO_x的原始排放水平。该文从 CFB 燃 烧 NO_x生成机理出发,综述各因素对 NO_x原始排放的影响 规律,对各低氮燃烧优化措施的原理进行分析,最后对目前 该领域的研究热点进行总结和展望。

关键词:循环流化床; NO_x;影响因素;低氮燃烧;研究 进展

0 引言

煤燃烧排放的 NO 和 NO₂(NO_x,本文不涉及 N₂O)是大气主要污染物之一,对生态环境、人体健康和社会发展有消极影响。随着经济和社会的发展,我国针对火电厂大气污染物的排放限值日趋严格,特别是 2013 年提出燃煤超低排放,要求新建燃煤锅炉的 NO_x排放进一步限制在 50mg/m³以内。这对燃煤污染物排放控制技术,乃至煤炭资源的未来发展提出了挑战。

作为洁净煤燃烧技术之一,循环流化床 (circulating fluidized bed, CFB)燃烧技术的一个突出 优势是能够低成本实现污染物排放控制,近 40 年 来在燃煤发电领域得到快速发展^[1]。由于 CFB 锅炉 具有燃烧温度较低且炉温分布均匀、还原性气氛明 显、存在大量还原性物料等特点,相较于煤粉锅炉 具有天然的低 NO_x排放优势。然而,面对 50mg/m³ 的超低排放要求,传统锅炉往往显得有些"力不从 心"。深度挖掘 CFB 锅炉的低氮燃烧潜力、开发新 一代脱硝技术,近年来成为该领域的研究热点。这

基金项目: 山西省科技重大专项资助项目(20181102001)。

The Major Science and Technology Project of Shanxi Province (20181102001).

需要进一步深化对 CFB 燃烧,特别是 NO_x生成和 排放规律的认识。

Leckner^[2]和 Johnsson^[3]等人在各自综述中对流 化床燃烧条件下 NO_x 的生成和还原机理做了较为详 尽的描述。然而,近 20 年来,随着流化床技术特别 是 CFB 锅炉技术的快速发展,以及更先进实验手段 和模拟方法的应用,对 CFB 内氮氧化物转化规律的 认识更加深入。更重要的是,NO_x 排放问题不是单 纯的反应问题,其不仅与燃料性质有关,更与燃烧 设备的性能和运行特性紧密关联。例如,同样的煤 种在不同 CFB 锅炉上燃烧后的污染物排放浓度可能 有很大差别;即便对于相同的锅炉但处在不同运行 工况下,也会导致 NO_x 排放的波动。因此,尽管反 应机理是一致的,但由于床温、配风、分离器效率、 给料粒径等运行参数的改变,炉内气氛和流动状态 会发生明显变化,从而使 NO_x 排放规律变得非常复 杂。而掌握 NO_x 排放与运行条件间的变化关系,恰 恰是工程上实现 CFB 锅炉低氮燃烧的关键所在。

本文探讨了 CFB 燃烧条件下 NO_x 生成机理, 分析了各设计或运行条件对 CFB 锅炉 NO_x 排放的 影响规律,展望了 CFB 锅炉低氮燃烧技术的发展。

1 循环流化床燃烧 NO_x 生成机理

CFB 燃烧温度不高(750~950℃),且碳氢自由基 含量极少,因此普遍认为 CFB 中的 NO_x 主要是燃 料型,且绝大部分为 NO。其转化路径包括热解、 焦炭反应、气体均相反应、床料表面异相催化反应 等诸多环节,如图 1^[4]所示。

Fig. 1 Main reaction paths of fuel nitrogen to NO_x in a fluidized bed (Copyright 1996 Elsevier)

煤中的氮主要存在于芳香型的吡咯、吡啶、季 氮及其衍生结构中,与碳原子形成共价键,同时也 报道发现了少量芳香胺结构^[5-7]。煤颗粒进入炉内后 首先发生热解,燃料氮也随之迁移转化,其中有 2 个关键参数值得注意。一个是挥发分氮和焦炭氮之 比。较多学者发现热解后焦炭中残留氮元素百分含 量要高于原煤,具体比值与温度、升温速率、停留 时间、气氛等因素有关^[3,8-9]。对于第二个参数,挥 发分氮中 HCN 和 NH₃ 的比例,目前学界仍存争议。 有学者认为 HCN 是主要产物^[3,10]。但 Zebron 等人 在鼓泡床条件下发现各煤种 NH₃ 释放量远大于 HCN^[9]。

焦炭氮、HCN 和 NH₃,在不同环境下的后续转 化路径及最终向 NO 净转化率有很大区别^[11-14]。与 挥发分氮相比, 焦炭氮的转化涉及更多异相反应。 焦炭在燃烧和气化过程中, 可直接或间接(CO 作还 原剂)还原周围烟气中的 NO。不同种类焦炭的孔隙 结构、矿物杂质组成和含量等特征不同^[15-17], 以及 在不同的粒径和碳燃尽率下^[18], 焦炭对 NO 的还原 性差别巨大; 而反应温度、热解条件、周围气氛 (CO/O₂/H₂O/SO₂ 浓度)等环境因素的改变也会对该 反应产生显著^[19-21]影响。正因为涉及众多基元反应 和影响因素, 不同燃料、不同实验条件下得到的焦 炭氮向 NO_x转化率存在很大差异^[22], 且挥发分氮和 焦炭氮转化率的相对大小也尚存争议^[11-13]。

CFB 锅炉床料中除了燃料颗粒外,还有石灰石 脱硫剂、灰分等,其对 NO_x 的生成或还原均具有不 同程度的催化作用^[23-24]。

2759

2 CFB 锅炉 NOx 原始排放影响因素

2.1 排放影响因素概述

CFB 锅炉内 NO_x 的生成和排放涉及燃料热解、 均相反应、焦炭反应、床料表面催化反应等多套反 应体系。燃料和石灰石粒径的变化对部分异相反应 进程具有直接作用(如热解、焦炭燃烧、石灰石脱硫 等)。过量空气系数、风量分配等运行参数则影响了 炉内氧浓度、温度分布等,有差别地影响各个反应 速率的快慢。而其他一些操作条件,如分离器效率、 给料位置等,尽管表面上与含氮反应不存在直接联 系,但调整分离器效率、排渣、给料粒径等,改变 炉内物料平衡状态,进而使气泡行为、颗粒团聚特 性、颗粒停留时间等发生变化,影响了炉内气体和 温度分布,并最终影响到化学反应速率和 NO_x生成。

图2简单描绘了CFB锅炉内各设计或运行参数 与NO_x排放的关系。可以看出,任一参数的变化, 都可能通过传递作用影响到最终NO_x排放量。这也 是CFB锅炉低氮燃烧技术关注的重点:通过研究不 同操作条件对CFB锅炉NO_x生成的交叉影响规律, 找到使NO_x排放尽可能低的最优参数组合。

图 2 CFB 锅炉内,各设计或运行参数与 NO_x 排放关系网络

Fig. 2 Relationships between several design or operation parameters and NO_x emission in the CFB boiler

2.2 燃料性质

燃料性质对 NO_x 排放具有至关重要的影响。即 使严格控制其他操作条件相同,在同一台锅炉上燃 用不同燃料, NO_x 排放水平也可能差别很大。如 图 3^[25]所示,总体上看,燃料挥发分含量越高, NO_x

Fig. 3 Effect of fuel volatile content on NO_x emission

原始排放越多。

燃料性质包括很多方面,例如工业和元素分析 结果、具有催化活性的矿物杂质含量和组成、成灰 磨耗特性、孔隙结构、比表面积等。这些性质对燃 料燃烧以及 NO_x生成都具有不同程度的影响,造成 了 NO_x排放规律的复杂性。

不同燃料的元素组成和赋存形态存在差异。对 100 余种煤的元素分析数据进行统计,发现氮、氢、 氧含量与煤阶大致正相关。而 Thomas 统计后发现 煤中吡咯等各含氮官能团的分配比例与煤阶关系 较为微弱^[7]。

燃料的理化性质首先影响到其热解特性,特别 是挥发分组成和产率。Fletcher 等在沉降炉上研究 了十余种煤的热解过程并利用 CPD-NLG 模型进行 模拟,结果显示不同煤热解释放的各挥发分气体产 率及氮元素的分配差异很大^[26-27]。Kambara 等通过 对 20 种煤的快速热解实验指出,挥发分含量越高,释放出的含氮轻质气体(HCN 和 NH₃)越多^[28]。 Leppalahti和 Zhang则进一步发现,煤阶越高,挥 发分氮中 HCN 越多,NH₃/HCN 越低^[10,29]。不同燃 料热解后残余焦炭的燃烧及焦炭氮的转化也呈现 很大区别。通过 Glarborg 对 4 种煤焦的燃烧实验^[30], 大体上看,高阶煤的焦炭氮转化率更高一些。不同 煤种在热解过程中氮元素分配不同,以及挥发分氮 和焦炭氮向 NO_x转化率的差异,可能是图 3 所示现 象的主要原因。

如前所述, 焦炭在燃烧过程中不仅伴随着焦炭 氮氧化, 还可直接或间接(催化)还原烟气中的 NO。 煤燃尽后的灰分对 CO 还原 NO 也具有明显的催化 活性。自然的, 不同煤焦及灰分在孔隙结构、比表 面积、矿物杂质含量和组成等方面不同, 表现出不 同的 NO 异相还原反应性, 相关动力学参数甚至相 差几个数量级^[24,31-32]。

不同燃料除在反应性方面存在差异外,成灰磨 耗特性也差别显著^[33-35]。而煤的成灰磨耗特性影响 了锅炉物料平衡和炉内传热传质等方面,最终也会 对包括 NO_x生成在内的反应产生影响。

2.3 床温和锅炉负荷

大量实验室研究和工程实践表明,炉膛温度升高,CFB锅炉NO,排放增加^[36-39],见图4^[38]。

Fig. 4 Effects of bed temperature on NO_x emission (Copyright 1996 Elsevier)

造成床温变化的因素有很多,典型条件是负荷 变动。负荷下降时,锅炉吸热量减少,炉膛整体温 度降低,此时 NO_x原始排放多表现出减少趋势。在 某燃用优质烟煤的 130t/h CFB 锅炉上,测试发现负 荷从 130t/h 降至 70 t/h 时,NO_x原始排放从 50mg/m³ 降低至 13mg/m³(O₂控制在 2.8%~3.5%)^[25]。

然而,除了床温,负荷变动往往还伴随着其他

状态变化。最直接的,负荷降低,给煤量减小,流 化风速降低,循环物料量大大减少,炉膛下部燃烧 释放的热量难以被烟气和循环物料带到上部,使得 炉内轴向温度分布不均匀,上下温差加大,一些循 坏性能较差的锅炉底部容易超温。为保证一定的流 化状态,通常适当增加一次风比例,而这对低氮燃 烧又是不利的。在这些因素综合作用下,原始排放 水平随负荷变化规律也存在不确定性。例如,某燃 用劣质烟煤的 300MW 亚临界 CFB 锅炉上 NO_x^[40], 排放浓度随负荷降低先减少后急剧增加,在 42%负 NO_x荷时 NO_x 排放甚至高达 495mg/m³,远超 88% 负荷时的 263mg/m³。而某 200MW 亚临界 CFB 锅 炉上的测试结果则表现出随负荷降低 NO_x 原始排 放逐渐升高的趋势^[41]。

为避免其他因素的干扰,在某 150t/h 燃用优质 烟煤的 CFB 锅炉上进行床温对比实验时,保持其他 条件不变,采用部分覆盖受热面的方法提高床温。 测试结果表明,减少受热面后炉膛出口烟温升高约 60℃,飞灰与底渣含碳量下降,NO_x 排放浓度由 60~70mg/m³升高至 80~100mg/m³。证明了单纯床温 升高会使 NO_x 排放增加。

从化学动力学角度来说,温度升高,几乎每个 反应的反应速率都会增加,包括 NO_x 的生成和还 原。然而,不同反应的活化能可能相差很大,各反 应物的反应级数也有所区别,这意味着在不同温度 区间、不同气氛下的主导反应会有所不同。换句话 说,燃料氮向 NO 转化的选择性发生改变。从煤热 解反应来看,温度升高,各挥发分气体产率和总挥 发分量增加^[42-44],且更多燃料氮倾向于以 NH₃ 或 HCN 等挥发分氮形式析出^[26,45-46],挥发分氮和焦炭 氮向 NO_x 的最终转化率存在差异,这间接体现了温 度升高对 NO_x 排放的影响。

图 5 为利用 ÅAU 详细化学机理模拟得到的 HCN+NH₃+O₂体系中NO最终浓度随温度变化情况。 明显看出,NO生成量随温度增加近乎呈指数增长, 这也得到其他实验或机理的证实^[47-49]。因此,从均相 反应来看,挥发分氮在高温下更倾向于转化为NO。

对于异相表面氮氧化物转化而言,因为还涉及 焦炭、灰分等对 NO 的(催化)还原作用,最终 NO 生成量随温度变化规律比较复杂。不同煤种的焦炭 氮转化率随温度变化规律也不一致^[30],某些无烟煤 焦炭氮向 NO 转化率随温度升高近似单调降低,说 明高温下焦炭对 NO 的还原作用逐渐突出;而挥发

PFR, t=1s, C_{CO2,0}=15%, C_{H2O,0}=8%, C_{HCN,0}=1000×10⁻⁶, C_{NH3,0}=1000×10⁻⁶

图 5 NO 生成量随温度变化

Fig. 5 Change of NO concentrations with temperature 分较高的烟煤焦炭氮向 NO 转化率随温度升高而增加,说明在该温度区间内仍以 NO 生成反应为主。150kW 流化床实验台上发现,焦炭氮向 NO_x 的转化 随温度升高先增加后减小,存在拐点^[12];而在某 2MW CFB 试验台上燃用神木半焦时则发现,NO_x 排放浓度随床温升高反而降低^[50]。另外,有学者借助固定床实验发现 CaO 催化 NH₃+O₂反应中^[51-53],随着温度升高,尽管 NH₃ 总转化率快速增加,但 NO 生成量逐渐减少,表明 NH₃氧化为 N₂或 CaO 催化 NH₃还原 NO 的反应变得明显,这对减少 NO_x 排放却是有利的。

综上所述,床温升高通常会导致 CFB 锅炉 NO_x 排放增加,这主要是由于高温下燃料热解过程中挥 发分氮释放量大幅增加,以及挥发分氮氧化时生成 NO_x的选择性明显升高。因此,在锅炉设计以及实 际运行中应控制床温在合理范围内,避免超温。

2.4 氧量和还原性气氛

低氮燃烧的核心之一是强化炉内还原性气氛。 主要工程措施有两个:一是在保证燃烧稳定和燃烧 效率的前提下适当降低过量空气系数,控制炉膛出 口 O₂ 含量;二是分级配风,二次风在密相床面之 上单层或多层给入,并控制一次风率以营造炉膛底 部的还原性气氛。

2.4.1 过量空气系数

大量实验表明,随着炉膛出口过量空气系数(氧量)增加,NO_x排放升高^[36-38],可归因于炉内空气越过量,整体氧化性气氛越强。

2.4.2 分级配风

CFB 锅炉普遍采用分级送分。适当降低一次风率、增加二次风层数、拉大二次风口与给料口以及 各层二次风口间距离,都有助于强化炉膛下部还原 性气氛,从而降低 NO_x 原始排放^[38,54-55]。

二次风位置对 NO_x 排放影响显著, 二次风注入 越早, 宏观还原性区域越小, NO_x 排放呈现增加的 趋势^[56]。需要注意的是, 分级配风时, 循环物料量 往往随二次风的位置和比例变化^[57]。二次风注入高 度越低, 越利于提高系统循环流率, 而物料循环性 能的提高又有利于降低 NO_x 原始排放(见 2.5 节)。 这两个方面是矛盾的。此外, 炉内布风均匀性、燃 烧均匀性以及温度均匀性也与二次风口布置有关, 是大型 CFB 锅炉降低 NO_x 的关键。因此, 二次风 口数量、位置、下倾角度、二次风射流动量等参数 确定, 需要综合考虑对炉内物料循环、燃烧、传热 和污染物排放的影响。

2.4.3 最佳氧量

片面追求炉内低氧,并不能始终有利于减少NO_x排放。如图 6^[58]所示,当过量空气系数很低时,随着给入空气量减少,NO 不降反升,且此时 CO 排放浓度增加,燃烧效率降低^[58]。这在一定程度上说明,"微氧"条件更有利于 NO 的还原^[56,59]。Chen 等^[60]和 Li 等^[31]也都在各自实验中证实,一定浓度的 氧气存在有利于促进飞灰或焦炭对 NO 的还原作用。

因此,强化还原性气氛并非一味降低氧量,过 量空气系数和分级配风设置存在最优条件,使得 NO_x排放水平最低。另外,值得注意的是,低氧条 件对燃烧而言通常是不利的,且炉内脱硫又以氧化 性气氛为佳。故调整炉内气氛以满足低氮燃烧的同 时,也要兼顾对燃烧效率和炉内脱硫效率的影响。 多数工程经验认为,炉膛出口氧量控制在 3.2%左 右,二次风喷口距炉底布风板不低于炉膛高度的 1/10 为宜。

2.5 分离器和循环系统性能

不少工程实践表明,提高分离器效率、改善锅 炉物料循环性能,能够有效降低 CFB 锅炉的 NO_x 原始排放水平^[25,61]。在某燃用优质烟煤的 90 t/h CFB 锅炉上,对比了分离器改进前后 NO_x 原始排放 的变化。测试发现,分离器提效后,锅炉飞灰粒径 由 $d_{(0.5)}=22\mu$ m、 $d_{(0.9)}=88\mu$ m 降低至 $d_{(0.5)}=10\mu$ m、 $d_{(0.9)}=54\mu$ m; NO_x 原始排放为 80~100 mg/m³,远低 于技改前的 200~250 mg/m³。

对 CFB 锅炉而言,只有粒度适中的颗粒可以在 循环回路中获得较长的停留时间,形成所谓循环 灰。提高分离器效率、改善物料循环性能,留存在 炉内的细颗粒和有效床料就越多,使得炉膛上部颗 粒悬浮浓度升高、循环量增大;同时为维持床压稳 定,从炉底排出的粗颗粒量增加,进一步降低炉内 平均床料粒度降低,提高床质量。EMMS 模型和 章明川等建立的分相模型均从理论上复现了这一 现象^[62-65]。

床料粒度、悬浮颗粒浓度和循环量的变化,直接影响到传热传质过程,进而在一定程度上改变了 炉内温度和气体分布。具体来说,炉底密相区通常 呈现鼓泡流态化,床料粒度降低,相内(乳化相)^[66-68] 和相间(气泡相和乳化相)^[69-70]气体传质阻力增大,意 味着乳化相内焦炭颗粒获得 O₂能力越弱,周围还原 性气氛越强。从传热角度分析,焦炭表面的传热系 数随床料粒度的减小而增大^[71],这意味着焦炭燃烧 释放的热量能够被及时带走,颗粒温度不会超出周 围很多,同样有助于减少焦炭型 NO_x的生成。李竟 岌等在小型鼓泡床实验中发现,焦炭氮向 NO 转化 率随床料粒度增加而升高,与上述分析一致^[72]。

而对上部稀相区而言,颗粒浓度越高、颗粒越 细,发生团聚的可能性越大,颗粒团内部固含率也 越高^[73-74]。此时颗粒团与外部的气体交换也就越困 难^[75-77],同样阻碍了主流中 O₂向颗粒团内扩散。 另一方面,颗粒悬浮浓度升高,受热面表面传热系 数增加,换热面积不变时适当减小传热稳压(床温) 就可满足热负荷需求,也有助于降低 NO_x 排放。

2.6 给煤粒度

实际 CFB 锅炉采用宽筛分给煤,给煤粒度通常 在 0~10mm之间。降低给煤粒度可表现在两个方面: 一是缩小给煤范围;二是减小给煤中粗颗粒份额。 从图 7 可以看出,在其他条件基本一致的前提下, NO_x排放浓度随给煤粒度的降低而降低。Luis 等在

一台中试 CFB 热态试验台上也发现该现象^[38]。

给煤粒度对 CFB 锅炉 NO_x 排放的影响主要体 现在两个方面:

首先,给煤粒度的改变影响了锅炉物料平衡特性。给煤越细,燃烧产生的粗灰颗粒就越少,当分离器效率等其他条件不变时,炉内平均床料粒度降低;同时进入稀相区的细颗粒变多,导致炉膛上部物料悬浮浓度和循环量都有所增加。由此带来的对含氮反应和 NO_x 排放的影响与 2.5 节所述一致。

其次,燃料粒径对热解、焦炭燃烧等化学反应 也具有直接影响。颗粒尺寸越大,加热过程中不均 匀性越强,颗粒升温越慢,使得残留的焦炭份额增 加,各挥发分产率也略有不同^[78-81]。之前研究也表 明热解中挥发分氮的比例随煤粒径增加而有所降 低^[46]。此外,因为大粒径煤颗粒热解速率低,且终 端沉降速度较大难以被烟气夹带向上流动,其倾向 于在下部密相区完成热解并释放出大部分挥发分 气体。而 CFB 锅炉密相区乳化相通常表现为还原性 气氛,飞溅区由于气泡破裂和二次风给入呈现局部 氧化性气氛,因此不同含氮物质在不同位置释放引 发后续反应可能不同,从而影响到 NO_x的生成。

对焦炭反应而言,当燃料粒径增大时,一方面 NO 在颗粒内部的停留时间增加,其被 C/CO 继续 还原的概率增大,使 NO 净生成减少,故在有氧条 件下,有研究发现燃料氮向 NO 的转化率随煤粒径 增加而降低^[77,82]。但另一方面,焦炭粒径增加导致 内外扩散阻力增大,又不利于其对周围环境中 NO 的还原,Li 等就发现在 900µm 之上,焦炭对 NO 的还原率随粒径增加而减小^[31]。

2.7 脱硫石灰石

大量运行实践表明,投放石灰石会造成 CFB

锅炉 NO_x 排放升高,特别是燃用高挥发分的煤 种^[83-87],从而抑制了 CFB 锅炉的低 NO_x 排放优势, 见图 8^[85]。

认为 CFB 锅炉投放石灰石后导致 NO_x 排放升 高的原因主要有以下两点:一是 CaO 颗粒能显著催 化 NH₃、HCN 等挥发分氮的氧化,且产物多为 NO^[50,88-90];二是 CaO 能显著促进 CO 等的氧化, 且脱硫造成炉内 SO₂ 浓度降低,使得 H、OH、O 等对 CO 均相氧化起关键作用的自由基含量增加, 从而导致炉内还原性气体浓度降低^[83-84,91]。

但另一方面,实践中也发现基于炉内脱硫和 SNCR 的同步脱硫脱硝技术是可行的,其脱硝效率 可达 60%~70%,部分工况下甚至可达 85%,不过 石灰石的存在对脱硝温度窗口和效率会存在一定 影响。Johnsson 等^[3]也指出,在炉膛中下部注入氨 会使 NO 排放增加,而在炉膛上部或分离器入口附 近喷氨可将 NO_x有效还原,具体原因在文献[23]有 过详细分析。

炉内石灰石对 NO_x影响的复杂性在 Zhao 等的中 试实验上表现的更为明显^[39]。他们发现燃用高挥发 分的 Minto 煤时, NO_x 排放随 Ca/S 增加而升高,与 上述结论一致。然而,当燃用低挥发分的石油焦时, NO_x 排放随 Ca/S 增加反而减少。出现后一现象的原 因可能为:石油焦中挥发分(氮)的含量很低,则 CaO 对 NH₃ 等的催化氧化作用减弱,而此时脱硫产物 CaSO₄ 等催化 CO 还原 NO 的作用变得突出^[92-93]。

当前,越来越多的 CFB 锅炉同时追求低氮燃烧 和炉内石灰石高效脱硫。然而,前者的核心是强化 还原性气氛;后者则需尽可能在氧化性条件下进 行,如何解耦二者之间的矛盾是工程上的研究热点 之一。有研究发现,大幅减小入炉石灰石粒径后, 炉内石灰石对 NO_x 排放的负面作用得到明显抑制^[94-95],见图 9^[94],这为上述问题提供了一个新的解决思路。

2.8 大容量 CFB 锅炉和炉内均匀性

CFB 技术的进一步发展方向是提高发电效率, 提高参数是改善火电效率的有效途径。将低成本污 染控制的 CFB 燃烧和高效发电的超临界蒸汽循环 结合为超临界、乃至超超临界 CFB 锅炉,是国内外 CFB 界一直追求的方向。这方面我国已走在国际前 列。2020 年中煤平朔 2×660 MW 超临界 CFB 机组 成功投运,是目前世界上单机容量最大的 CFB 锅 炉。此外,中国目前正在研发和建设 660MW 超超 临界 CFB 锅炉。

与小容量亚临界或热水锅炉相比,超临界、超 超临界 CFB 锅炉的炉内温度分布、气氛组织等有所 变化;分离器结构和布置、二次风设计、煤和石灰 石给入等也需做出调整;加上大容量 CFB 锅炉普遍 采用的外置换热床等特殊结构,导致其物料平衡、 燃烧和污染物排放等特性具有明显区别。其中,大 容量 CFB 锅炉面临的一个突出问题是炉膛均匀性。 为提高蒸汽参数、增加炉内受热面,超临界、超超 临界 CFB 锅炉尺寸很大,拥有大面积布风板、多分 离器并联回路、数量众多且布置复杂的给煤口和二 次风口等。由于一次风布风不均^[96]、给煤不均^[97]、 二次风给入不均^[98-99]、返料不均^[100]、受热面布置 及换热不均^[101]等因素,导致炉内床压、温度、流 动、气氛等分布不均。

炉内状态不均匀,例如某处氧气浓度过高和超温,必然促进该处燃料氮向 NO_x 的转化;而流动和 物料分布不均也影响了焦炭、灰分活性物质与烟气的混合,对 NO_x 还原作用减弱,从而导致 NO_x 原始

排放升高。图 10 展示了对国内某 600 MW 超临界 CFB 锅炉的部分现场测试结果^[102],可以看出靠近 前墙处的 NO_x浓度明显高于后墙(左右墙 NO_x浓度 相差较小)。卢啸风等人对同一台锅炉的测试和研究 也表明,由于给煤不均、炉底布风不均、靠近前/ 后墙区域部分二次风支管出口风速均匀性较差等 原因,造成前墙附近 O₂含量明显偏高^[96-99],与 NO_x 截面分布情况一致。此外,炉内流动不均还会影响 到下游脱硝设备的运行效率,最明显的就是 SNCR 系统中脱硝还原剂和烟气中 NO_x 的混合变差,使脱 硝效率降低。

图 10 某 600MW 超临界 CFB 锅炉炉膛 前后墙烟气中 NOx 质量浓度

Fig. 10 NO_x concentration in flue gas near front/back wall for a 600MW supercritical CFB boiler

大尺度炉膛内气固流动复杂,各区域风煤混合 不均可能是导致大型 CFB 锅炉 NO_x 排放偏高的因 素之一。因此,需从锅炉结构设计、受热面布置、 风煤给入等方面进行优化,以尽可能提高大容量 CFB 锅炉的炉内均匀性。

3 研究展望

任何一项设计或运行参数的改变,都有可能对 CFB 锅炉的 NO_x 生成和排放产生影响。自然的,也 就存在一个使 NO_x 原始排放最低的最优参数组合。 如何强化 CFB 锅炉低氮燃烧,以尽可能低的成本实 现 NO_x 超低排放,仍将是 CFB 燃烧技术未来一段 时间的研究热点,特别在以下几个方面。

1)目前文献中多讨论单一运行条件变化对 CFB锅炉NO_x排放的影响,对多变量间交叉影响规 律的研究还比较少。从数学角度来说,NO_x排放(因 变量)和各运行参数(自变量)间是多元、强非线性函 数关系,且各自变量间并非相互独立,如不同分离 器效率下 NO_x 排放对给煤粒度的敏感性是否会发 生变化。从工程上看,要想依靠低氮燃烧实现 NO_x 超低排放,也必然是多参数协同优化的结果。

2)考虑到现场实验的成本和可行性,不少学 者利用模拟手段对 CFB 锅炉的 NO_x 排放进行预测, 如计算流体力学(CFD)方法^[103-104]。然而,面对大容 量 CFB 锅炉的模拟,CFD 方法在计算效率上尚有 限制,尤其对参数研究而言。与之相比,基于物理 简化的 1-D/1.5-D/2-D CFB 锅炉模型,由于利用相 对简单的物理或半经验公式描述气固流动过程,具 有很高的计算效率,在大尺度工业设备的模拟上已 得到较多应用^[105-106],但其模拟结果还需得到更多 实验的验证。如何平衡计算精度和计算效率,开发 有效的工程计算方法,仍是研究重点之一。

3)燃料适应性。因为经济性、环保等方面原 因,越来越多的 CFB 锅炉机组掺烧、甚至纯烧生物 质、水煤浆、污泥等非常规燃料,特别是新建机组。 然而,这些燃料的燃烧、成灰和污染物生成特性与 煤相比又有很大区别。面对同样的超低排放要求, 每种燃料与 CFB 燃烧技术的结合都有必要进行单 独研究。例如,世界范围内生物质能源占比不断提 高,但其来源复杂。我国生物质以草本原料为主, 且大部分为农作物秸秆,氮元素含量较高(普遍大于 1%),则对应锅炉的 NO_x 排放问题值得关注。

4)负荷适应性。随着新能源装机量的快速增 长,加上经济增速放缓对用电需求的降低,很多燃 煤锅炉长期处于中低负荷运行。此外,太阳能、风 能等可再生能源具有波动性、随机性和低可控性等 特点,为保证电力系统稳定,需要燃煤发电机组承 担深度调峰任务。在这方面, CFB 锅炉由于炉内存 有大量蓄热能力较强的固体床料、温度分布均匀等 特点,即使在很低负荷下也能保证稳定燃烧和正常 运行。然而, CFB 锅炉自身热惯性大、燃烧滞后、 主汽压力响应较慢,其变负荷能力略不及煤粉锅 炉。在快速升降负荷过程中,若控制系统响应不当, NO_x排放浓度很可能剧烈变化,严重的发生瞬时超 标。因此,研究 CFB 锅炉在低负荷、变负荷下的燃 烧特性、污染物排放特性和水动力特性等, 深入挖 掘 CFB 发电机组的深度调峰能力,具有重要的现实 意义。

5)随着超临界、超超临界 CFB 锅炉技术的发展和推广,对 2.8 节所述的大型 CFB 锅炉炉内气固流动规律和污染物排放特性值得进一步研究;而对大量现存中小容量 CFB 锅炉的超低排放技术改造,

也是工程上面临的关键问题。

4 结论

强化炉内低氮燃烧,通过设计和运行优化从源 头上降低炉膛出口处 NO_x 排放浓度,是目前绝大多 数 CFB 锅炉超低排放技术改造的首选方案。燃料种 类和锅炉负荷等外部条件;以分离器效率为代表的 循环系统性能;与过量空气系数、分级配风等参数 相关的炉内氧量控制;与受热面布置、排渣等运行 条件有关的炉膛温度调节;入炉煤和石灰石粒径; 以及受风煤混合影响的炉膛均匀性等众多因素,对 CFB 锅炉 NO_x 原始排放具有不同程度的影响。本文 从 CFB 燃烧条件下 NO_x 生成机理出发,深入分析 了各设计或运行参数对 CFB 锅炉 NO_x 排放的影响 规律,并对目前低氮燃烧的研究热点进行了总结和 展望。希望本文能为 CFB 锅炉技术的污染物治理提 供参考。

参考文献

- LYU Junfu, YANG Hairui, LING Wen, et al. Development of a supercritical and an ultra-supercritical circulating fluidized bed boiler[J]. Frontiers in Energy, 2017, 13(1): 114-119.
- [2] LECKNER B. Fluidized bed combustion: mixing and pollutant limitation[J]. Progress in Energy and Combustion Science, 1998, 24(1): 31-61.
- [3] JOHNSSON J E. Formation and reduction of nitrogen oxides in fluidized-bed combustion[J]. Fuel, 1994, 73(9): 1398-1415.
- [4] WINTER F, WARTHA C, LÖFFLER G, et al. The NO and N₂O formation mechanism during devolatilization and char combustion under fluidized-bed conditions [J]. Symposium(International) on Combustion, 1996, 26(2): 3325-3334.
- [5] KIRTLEY S M, MULLINS O C, VAN ELP J, et al. Nitrogen chemical structure in petroleum asphaltene and coal by X-ray absorption spectroscopy[J]. Fuel, 1993, 72(1): 133-135.
- [6] 杨二浩,朱建国,欧阳子区,等. 细粉半焦预热燃烧过 程中颗粒特性与氮元素释放关系实验研究[J].中国电机 工程学报, 2017, 37(15): 4415-4421.

YANG Erhao, ZHU Jianguo, OUYANG Ziqu, et al. Experimental study on the relationship between particle properties and the release of nitrogen in fine char during preheating and combustion process[J]. Proceedings of the CSEE, 2017, 37(15): 4415-4421(in Chinese).

- [7] THOMAS K M. The release of nitrogen oxides during char combustion[J]. Fuel, 1997, 76(6): 457-473.
- [8] ZHANG Guangyi, ZHU Chuanqiang, GE Yaxin, et al. Fluidized bed combustion in steam-rich atmospheres for high-nitrogen fuel: nitrogen distribution in char and volatile and their contributions to NO_x[J]. Fuel, 2016, 186: 204-214.
- [9] PHIRI Z, EVERSON R C, NEOMAGUS H W J P, et al. Release of nitrogenous volatile species from south african bituminous coals during pyrolysis[J]. Energy Fuels, 2018, 32(4): 4606-4616.
- [10] ZHANG Haifeng. Nitrogen evolution and soot formation during secondary coal pyrolysis[D]. Provo, Utah: Brigham Young University, 2001.
- [11] ZHOU Hao, HUANG Yan, MO Guiyuan, et al. Experimental investigations of the conversion of fuel-N, volatile-N and char-N to NO_x and N₂O during single coal particle fluidized bed combustion[J]. Journal of the Energy Institute, 2017, 90(1): 62-72.
- [12] Li Pinwei, Chyang C S, Ni H W. An experimental study of the effect of nitrogen origin on the formation and reduction of NO_x in fluidized-bed combustion[J]. Energy, 2018, 154: 319-327.
- [13] HE Jingdong, SONG Wenli, GAO Shiqiu, et al. Experimental study of the reduction mechanisms of NO emission in decoupling combustion of coal[J]. Fuel Processing Technology, 2006, 87(9): 803-810.
- [14] KONTTINEN J, KALLIO S, HUPA M, et al. NO formation tendency characterization for solid fuels in fluidized beds[J]. Fuel, 2013, 108: 238-246.
- [15] WU Xingyuan, SONG Qiang, ZHAO Haibo, et al. Kinetic modeling of inherent mineral catalyzed NO reduction by biomass char[J]. Environmental Science & Technology, 2014, 48(7): 4184-4190.
- [16] ZHAO Zongbin, QIU Jieshan, LI Wen, et al. Influence of mineral matter in coal on decomposition of NO over coal chars and emission of NO during char combustion[J]. Fuel, 2003, 82(8): 949-957.
- [17] ZHONG B J, SHI W W, FU W B. Effect of catalysts on the NO reduction during the returning with coal chars as the fuel[J]. Combustion Science and Technology, 2001, 164(1): 239-251.
- [18] GUO Feng, JENSEN M J, BAXTER L L, et al. Kinetics of NO reduction by coal, biomass, and graphitic chars: effects of burnout level and conditions[J]. Energy & Fuels, 2014, 28(7): 4762-4768.
- [19] LI Sen, YU Juanli, WEI Xiaolin, et al. Catalytic reduction

of nitric oxide by carbon monoxide over coal gangue hollow ball[J]. Fuel Processing Technology, 2014, 125: 163-169.

- [20] WANG Changan, DU Yongbo, CHE Defu. Investigation on the NO reduction with coal char and high concentration CO during oxy-fuel combustion[J]. Energy & Fuels, 2012, 26(12): 7367-7377.
- [21] GUERRERO M, MILLERA Á, ALZUETA M U, et al. Experimental and kinetic study at high temperatures of the NO reduction over eucalyptus char produced at different heating rates[J]. Energy & Fuels, 2011, 25(3): 1024-1033.
- [22] 吕俊复,柯希玮,蔡润夏,等.循环流化床燃烧条件下 焦炭表面 NO_x还原机理研究进展[J].煤炭转化,2018, 41(1): 1-12.

LYU Junfu, KE Xiwei, CAI Runxia, et al. Research progress on the kinetics of NO_x reduction over chars in fluidized bed combustion[J]. Coal Conversion, 2018, 41(1): 1-12(in Chinese).

[23] 柯希玮,蔡润夏,吕俊复,等. 钙基脱硫剂对循环流化
 床 NO_x 排放影响研究进展[J]. 洁净煤技术,2019,25(1):
 1-11.

KE Xiwei, CAI Runxia, LYU Junfu, et al. Research progress of the effects of Ca-based sorbents on the NO_x reaction in circulating fluidized bed boilers[J]. Clean Coal Technology, 2019, 25(1): 1-11(in Chinese).

[24] 李竞岌,张翼,杨海瑞,等.煤中灰成分对 CO 还原 NO 反应影响的动力学研究[J].煤炭学报,2016,41(10): 2448-2453.

LI Jingji, ZHANG Yi, YANG Hairui, et al. Study of the effect of ash composition in coal on the kinetic parameters of NO reduction reaction by CO[J]. Journal of China Coal Society, 2016, 41(10): 2448-2453(in Chinese).

[25] 柯希玮, 蔡润夏, 杨海瑞, 等. 循环流化床燃烧的 NO_x 生成与超低排放[J]. 中国电机工程学报, 2018, 38(2): 390-396.
KE Xiwei, CAI Runxia, YANG Hairui, et al. Formation and ultra-low emission of NO_x for circulating fluidized

bed combustion[J]. Proceedings of the CSEE, 2018, 38(2): 390-396(in Chinese).

- [26] PERRY S T, FLETCHER T H, SOLUM M S, et al. Modeling nitrogen evolution during coal pyrolysis based on a global free-radical mechanism[J]. Energy & Fuels, 2000, 14(5): 1094-1102.
- [27] GENETTI D, FLETCHER T H, PUGMIRE R J. Development and application of a correlation of ¹³C NMR chemical structural analyses of coal based on elemental composition and volatile matter content[J]. Energy &

Fuels, 1999, 13(1): 60-68.

- [28] KAMBARA S, TAKARADA T, YAMAMOTO Y, et al. Relation between functional forms of coal nitrogen and formation of nitrogen oxide(NO_x) precursors during rapid pyrolysis[J]. Energy & Fuels, 1993, 7(6): 1013-1020.
- [29] LEPPÄLAHTI J. Formation of NH₃ and HCN in slowheating-rate inert pyrolysis of peat, coal and bark[J]. Fuel, 1995, 74(9): 1363-1368.
- [30] GLARBORG P, JENSEN A D, JOHNSSON J E. Fuel nitrogen conversion in solid fuel fired systems[J]. Progress in Energy and Combustion Science, 2003, 29(2): 89-113.
- [31] DONG Li, GAO Shiqiu, SONG Wenli, et al. Experimental study of NO reduction over biomass char[J]. Fuel Processing Technology, 2007, 88(7): 707-715.
- [32] ZHANG Juwei, SUN Shaozeng, ZHAO Yijun, et al. Effects of inherent metals on NO reduction by coal char[J]. Energy & Fuels, 2011, 25(12): 5605-5610.
- [33] KE Xiwei, LI Dongfang, ZHANG Man, et al. Ash formation characteristics of two Indonesian coals and the change of ash properties with particle size[J]. Fuel Processing Technology, 2019, 186: 73-80.
- [34] WANG Tao, YANG Hairui, WU Yuxin, et al. Experimental study on the effects of chemical and mineral components on the attrition characteristics of coal ashes for fluidized bed boilers[J]. Energy & Fuels, 2012, 26(2): 990-994.
- [35] YANG Hairui, WIRSUM M, LU Junfu, et al. Semiempirical technique for predicting ash size distribution in CFB boilers[J]. Fuel Processing Technology, 2004, 85(12): 1403-1414.
- [36] SVOBODA K, POHOŘELÝ M. Influence of operating conditions and coal properties on NO_x and N₂O emissions in pressurized fluidized bed combustion of subbituminous coals[J]. Fuel, 2004, 83(7-8): 1095-1103.
- [37] FENG Bo, LIU Hao, YUAN Jianwei, et al. Nitrogen oxides emission from a circulating fluidized bed combustor[J]. International Journal of Energy Research, 1996, 20(11): 1015-1025.
- [38] DE DIEGO L F, LONDONO C A, WANG X S, et al. Influence of operating parameters on NO_x and N₂O axial profiles in a circulating fluidized bed combustor [J]. Fuel, 1996, 75(8): 971-978.
- [39] ZHAO Jiansheng, GRACE J R, LIM C J, et al. Influence of operating parameters on NO_{itx} emissions from a circulating fluidized bed combustor[J]. Fuel, 1994, 73(10): 1650-1657.
- [40] 李宽, 曲耀鹏, 郑媛, 等. 300MW 循环流化床锅炉低

负荷 NO_x生成特性分析及应对措施[J]. 东北电力技术, 2019, 40(11): 46-49.

LI Kuan, QU Yaopeng, ZHENG Yuan, et al. Analysis and response measures of NO_x low lord formation characteristics in 300MW CFB and countermeasures [J]. Northeast Electric Power Technology, 2019, 40(11): 46-49(in Chinese).

[41] 王丰吉,王东,冯前伟.超低排放形势下 CFB 锅炉低 氮燃烧和 SNCR 联合脱硝提效研究[J].发电与空调,2017,38(5):6-10.
 WANG Fengji, WANG Dong, FENG Qianwei. Study on

low-nitrogen combustion and SNCR combined denitrification system of CFB boiler under ultra-low emission situation[J]. Power Generation & Air Condition, 2017, 38(5): 6-10(in Chinese).

- [42] YAN Binhang, CAO Chenxi, CHENG Yan, et al. Experimental investigation on coal devolatilization at high temperatures with different heating rates[J]. Fuel, 2014, 117: 1215-1222.
- [43] FUENTES-CANO D, SALINERO J, HARO P, et al. The influence of volatiles to carrier gas ratio on gas and tar yields during fluidized bed pyrolysis tests[J]. Fuel, 2018, 226: 81-86.
- [44] NEVES D, MATOS A, TARELHO L, et al. Volatile gases from biomass pyrolysis under conditions relevant for fluidized bed gasifiers[J]. Journal of Analytical and Applied Pyrolysis, 2017, 127: 57-67.
- [45] 曾光,孙绍增,赵志强,等.不同温度时煤热解中HCN/NH3的析出与CFB锅炉中NOx生成的关联性研究
 [J].中国电机工程学报,2011,31(35):47-52.
 ZENG Guang, SUN Shaozeng, ZHAO Zhiqiang, et al. Correlation study of HCN/NH3 releasing during coal pyrolysis and NOx formation in a CFB boiler under different temperatures[J]. Proceedings of the CSEE,2011, 31(35): 47-52(in Chinese).
- [46] KE Xiwei, ENGBLOM M, CHENG Lujian, et al. Modeling and experimental investigation on the fuel particle heat-up and devolatilization behavior in a fluidized bed[J]. Fuel, 2021, 288(1): 119794.
- [47] DAGAUT P, GLARBORG P, ALZUETA M U. The oxidation of hydrogen cyanide and related chemistry [J]. Progress in Energy and Combustion Science, 2008, 34(1): 1-46.
- [48] GIMÉNEZ-LÓPEZ J, MILLERA A, BILBAO R, et al. HCN oxidation in an O₂/CO₂ atmosphere: an experimental and kinetic modeling study[J]. Combustion and Flame, 2010, 157(2): 267-276.

- [49] HULGAARD T, DAM-JOHANSEN K. Homogeneous Nitrous oxide formation and destruction under combustion conditions[J]. AIChE Journal, 1993, 39(8): 1342-1354.
- [50] FU Shilong, SONG Qiang, TANG Junshi, et al. Effect of CaO on the selective non-catalytic reduction deNO_x process: experimental and kinetic study[J]. Chemical Engineering Journal, 2014, 249: 252-259.
- [51] FU Shilong, SONG Qiang, YAO Qiang. Experimental and kinetic study on the influence of CaO on the N₂O + NH₃ + O₂ system[J]. Energy & Fuels, 2015, 29(3): 1905-1912.
- [52] FU Shilong, SONG Qiang, YAO Qiang. Mechanism study on the adsorption and reactions of NH₃, NO, and O₂ on the CaO surface in the SNCR deNO_x process[J]. Chemical Engineering Journal, 2016, 285: 137-143.
- [53] 巩志强. 低阶煤热解半焦的燃烧特性和 NO_x 排放特性 试验研究[D]. 北京:中国科学院研究生院(工程热物理 研究所), 2016.

GONG Zhiqiang. Experimental study on combustion and NO_x emisison characteristics of char from pyrolysis of low rank coal[D]. Beijing: Graduate School Chinese Academy of Sciences(Institute of Engineering Thermophysics), 2016(in Chinese).

- [54] TOURUNEN A, SAASTAMOINEN J, NEVALAINENH. Experimental trends of NO in circulating fluidized bed combustion[J]. Fuel, 2009, 88(7): 1333-1341.
- [55] WANG X S, GIBBS B M, RHODES M J. Impact of air staging on the fate of NO and N₂O in a circulating fluidized-bed combustor[J]. Combustion and Flame, 1994, 99(3-4): 508-515.
- [56] 李楠,张世鑫,赵鹏勃,等.循环流化床锅炉低氮燃烧 技术试验研究[J].洁净煤技术,2018,24(5):84-89.
 LI Nan, ZHANG Shixin, ZHAO Pengbo, et al. Experimental study on low-nitrogen combustion technology of circulating fluidized bed boiler[J]. Clean Coal Technology, 2018, 24(5): 84-89(in Chinese).
- [57] 汪佩宁. 循环流化床过渡区二次风射流及颗粒扩散行为研究[D]. 北京:清华大学,2017.
 WANG Peining. Study on secondary air injection and solids dispersion in the splash zone of a circulating fluidized bed[D]. Beijing: Tsinghua University, 2017(in Chinese).
- [58] LYNGFELT A, LECKNER B. Combustion of wood-chips in circulating fluidized bed boilers — NO and CO emissions as functions of temperature and air-staging[J]. Fuel, 1999, 78(9): 1065-1072.
- [59] 王哲. 热电厂 4×220t/h 循环流化床锅炉超低排放脱硝 改造研究[D]. 大连: 大连理工大学, 2019.

Wang Zhe. Research on transformation of ultra-low emission denitration of $4 \times 220t/h$ circulating fluidized bed(CFB) boiler of thermal power plant[D]. Dalian: Dalian University of Technology, 2019(in Chinese).

- [60] Chen Weiyin, Gathitu B B. Kinetics of post-combustion nitric oxide reduction by waste biomass fly ash[J]. Fuel Processing Technology, 2011, 92(9): 1701-1710.
- [61] Ke Xiwei, Cai Runxia, Zhang Man, et al. Application of ultra-low NO_x emission control for CFB boilers based on theoretical analysis and industrial practices[J]. Fuel Processing Technology, 2018, 181: 252-258.
- [62] 胡善伟. 基于介尺度结构的 EMMS 模型的改进、扩展 及应用[D]: 北京: 中国科学院大学(中国科学院过程工 程研究所), 2017.

HU Shanwei. Modification, extension and application of the EMMS model based on meso-scale structure[D]. Beijing: University of Chinese Academy of Sciences (Institute of Process Engineering, Chinese Academy of Sciences), 2017(in Chinese).

- [63] LI Jinghai, KWAUK M. Exploring complex systems in chemical engineering—the multi-scale methodology[J]. Chemical Engineering Science, 2003, 58(3-6): 521-535.
- [64] ZHANG Mingchuan, ZHANG Chu. Further integration of the type-A-choking-oriented unified model for fast fluidization dynamics[J]. Powder Technology, 2015, 286: 132-143.
- [65] ZHANG Mingchuan, ZHANG Chu. A type-A-chokingoriented unified model for fast fluidization dynamics[J]. Powder Technology, 2013, 241: 126-141.
- [66] VEPSÄLÄINEN A, SHAH S, RITVANEN J, et al. Bed Sherwood number in fluidised bed combustion by Eulerian CFD modelling[J]. Chemical Engineering Science, 2013, 93: 206-213.
- [67] SCALA F. Mass transfer around freely moving active particles in the dense phase of a gas fluidized bed of inert particles[J]. Chemical Engineering Science, 2007, 62(16): 4159-4176.
- [68] HAYHURST A N, PARMAR M S. Measurement of the mass transfer coefficient and sherwood number for carbon spheres burning in a bubbling fluidized bed[J]. Combustion and Flame, 2002, 130(4): 361-375.
- [69] SIT S P, GRACE J R. Effect of bubble interaction on interphase mass transfer in gas fluidized beds[J]. Chemical Engineering Science, 1981, 36(2): 327-335.
- [70] RAJAN R R, WEN C Y. A comprehensive model for fluidized bed coal combustors[J]. AIChE Journal, 1980, 26(4): 642-655.

- [71] CHAO Junnan, LU Junfu, YANG Hairui, et al. Experimental study on the heat transfer coefficient between a freely moving sphere and a fluidized bed of small particles[J]. International Journal of Heat and Mass Transfer, 2015, 80: 115-125.
- [72] 李竞岌,杨欣华,杨海瑞,等. 鼓泡床焦炭型氮氧化物 生成的试验与模型研究[J]. 煤炭学报,2016,41(6): 1546-1553.
 LI Jingji, YANG Xinhua, YANG Hairui, et al.

Experimental study and modeling of NO_x generation from char nitrogen in the bubbling bed[J]. Journal of China Coal Society, 2016, 41(6): 1546-1553(in Chinese).

- [73] 陈程,祁海鹰. EMMS 曳力模型及其颗粒团模型的构 建和检验[J]. 化工学报, 2014, 65(6): 2003-2012.
 CHEN Cheng, QI Haiying. Development and validation of cluster and EMMS drag model[J]. CIESC Journal, 2014, 65(6): 2003-2012(in Chinese).
- [74] 张文斌,祁海鹰,由长福,等.碰撞诱发颗粒团聚及破碎的力学分析[J].清华大学学报:自然科学版,2002,42(12):1639-1643.
 ZHANG Wenbin, QI Haiying, YOU Changfu, et al. Mechanical analysis of agglomeration and fragmentation of particles during collisions[J]. Journal of Tsinghua University: Science & Technology, 2002, 42(12):1639-1643(in Chinese).
- [75] HOU Baolin, TANG Hailong, ZHANG Haiying, et al. Experimental and theoretical investigation of mass transfer in a circulating fluidized bed[J]. Chemical Engineering Science, 2013, 102: 354-364.
- [76] 刘向军,赵燕,徐旭常.循环流化床内煤粉颗粒团燃烧 行为理论分析[J].中国电机工程学报,2006,26(1): 30-34.

LIU Xiangjun, ZHAO Yan, XU Xuchang, et al. Theoretically studies of the coal particle cluster combustion behavior in a circulating fluidized bed[J]. Proceedings of the CSEE, 2006, 26(1): 30-34(in Chinese).

- [77] WANG Shuyan, YIN Lijie, LU Huilin, et al. Numerical analysis of interphase heat and mass transfer of cluster in a circulating fluidized bed[J]. Powder Technology, 2009, 189(1): 87-96.
- [78] SALMASI A, SHAMS M, CHERNORAY V. Simulation of sub-bituminous coal hydrodynamics and thermochemical conversion during devolatilization process in a fluidized bed[J]. Applied Thermal Engineering, 2018, 135: 325-333.
- [79] VALDÉS C F, CHEJNE F. Effect of reaction atmosphere on the products of slow pyrolysis of coals[J]. Journal of

Analytical and Applied Pyrolysis, 2017, 126: 105-117.

- [80] TIAN Bin, QIAO Yingyun, TIAN Yuanyu, et al. Investigation on the effect of particle size and heating rate on pyrolysis characteristics of a bituminous coal by TG–FTIR[J]. Journal of Analytical and Applied Pyrolysis, 2016, 121: 376-386.
- [81] SUDHAKAR D R, KOLAR A K. Experimental investigation of the effect of initial fuel particle shape, size and bed temperature on devolatilization of single wood particle in a hot fluidized bed[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92(1): 239-249.
- [82] MOLINAA, EDDINGS E G, Pershing D W, et al. Nitric oxide destruction during coal and char oxidation under pulverized-coal combustion conditions[J]. Combustion and Flame, 2004, 136(3): 303-312.
- [83] LUPIÁÑEZ C, DÍEZ L I, ROMEO L M. NO emissions from anthracite oxy-firing in a fluidized-bed combustor: effect of the temperature, limestone, and O₂[J]. Energy & Fuels, 2013, 27(12): 7619-7627.
- [84] TARELHO L A C, MATOS M A A, PEREIRA F J M A. Influence of limestone addition on the behaviour of NO and N₂O during fluidised bed coal combustion[J]. Fuel, 2006, 85(7-8): 967-977.
- [85] 张磊,杨学民,谢建军,等.粉煤和石灰石加入位置对 循环流化床燃煤过程 NO_x 与 N₂O 排放的影响[J].中国 电机工程学报,2006,26(21):92-98.
 ZHANG Lei, YANG Xuemin, XIE Jianjun, et al. Effect of coal and limestone addition position on emission of NO_x and N₂O during coal combustion in a circulating fluidized bed combustor[J]. Proceedings of the CSEE, 2006, 26(21): 92-98(in Chinese).
- [86] 侯祥松,李金平,张海,等.石灰石脱硫对循环流化床中 NOx 生成和排放的影响[J].电站系统工程,2005,21(1):5-7,16.

HOU Xiangsong, LI Jinping, ZHANG Hai, et al. Limestone effects on NO_x formation & emission in CFB combustors[J]. Power System Engineering, 2005, 21(1): 5-7, 16(in Chinese).

- [87] SHIMIZU T, TACHIYAMA Y, FUJITA D, et al. Effect of SO₂ removal by limestone on NO_x and N₂O emissions from a circulating fluidized bed combustor[J]. Energy & Fuels, 1992, 6: 753-757.
- [88] ZIJLMA G J, JENSEN A D, JOHNSSON J E, et al. NH₃ oxidation catalysed by calcined limestone—a kinetic study[J]. Fuel, 2002, 81(14): 1871-1881.
- [89] SHIMIZU T, ISHIZU K, KOBAYASHI S, et al. Hydrolysis and oxidation of HCN over limestone under

fluidized bed combustion conditions[J]. Energy & Fuels, 1993, 7: 645-647.

- [90] SCHÄFER S, BONN B. Hydrolysis of HCN as an important step in nitrogen oxide formation in fluidised combustion. part II: heterogeneous reactions involving limestone[J]. Fuel, 2002, 81(13): 1641-1646.
- [91] LIU Hao, GIBBS B M. The influence of limestone addition at different positions on gaseous emissions from a coal-fired circulating fluidized bed combustor[J]. Fuel, 1998, 77(14): 1569-1577.
- [92] YANG Xinfang, ZHAO Bo, ZHUO Yuqun, et al. The investigation of SCR reaction on sulfated CaO[J]. Asia-Pacific Journal of Chemical Engineering, 2012, 7(1): 55-62.
- [93] Li Tianjin, Zhuo Yuqun, Zhao Yufeng, et al. Effect of sulfated CaO on NO reduction by NH₃ in the presence of excess oxygen[J]. Energy & Fuels, 2009, 23(4): 2025-2030.
- [94] 蔡润夏,柯希玮,葛荣存,等.循环流化床超细石灰石 炉内脱硫研究[J].中国电机工程学报,2018,38(10): 3042-3048.

CAI Runxia, KE Xiwei, GE Rongcun, et al. The in-situ desulfurization with ultra-fine limestone for circulating fluidized bed boilers[J]. Proceedings of the CSEE, 2018, 38(10): 3042-3048(in Chinese).

- [95] CAI Runxia, KE Xiwei, HUANG Yiqun, et al. applications of ultrafine limestone sorbents for the desulfurization process in CFB boilers[J]. Environmental Science & Technology, 2019, 53(22): 13514-13523.
- [96] YAN Jin, LU Xiaofeng, WANG Quanhai, et al. Experimental and numerical study on air flow uniformity in the isobaric windbox of a 600MW supercritical CFB boiler[J]. Applied Thermal Engineering, 2017, 122: 311-321.
- [97] 宗琛. 600MW 超临界循环流化床锅炉给煤均匀性研究
 [D]:重庆:重庆大学,2016.
 ZONG Chen. Study on coal feeding uniformity of 600MW super-critical circulating fluidized bed boiler[D].
 Chongqing: Chongqing University, 2016(in Chinese).
- [98] 周金良,王泉海,严谨,等. 白马 600MW 超临界 CFB 锅炉二次风系统均匀性试验与数值模拟[J].中国电机工 程学报,2018,38(2):406-412.

ZHOU Jinliang, WANG Quanhai, YAN Jin, et al. Experimental and numerical simulation on the uniformity of secondary air system of baima 600MW supercritical CFB boiler[J]. Proceedings of the CSEE, 2018, 38(2): 406-412(in Chinese). [99] 严谨, 卢啸风, 王泉海, 等. 600MW 超临界 CFB 锅炉 炉内稀相区燃烧均匀性的实炉试验研究[J]. 中国电机工 程学报, 2018, 38(2): 397-405.
 YAN Jin, LU Xiaofeng, WANG Quanhai, et al. Field tests

on combustion uniformity of the dilute phase in a 600MW supercritical CFB boiler[J]. Proceedings of the CSEE, 2018, 38(2): 397-405(in Chinese).

[100]郑越,卢啸风,杨文奇,等.不同返料偏差下大型 CFB 锅炉炉内颗粒浓度分布特性的数值模拟[J].中国电机 工程学报,2020,40(3):848-859.

ZHENG Yue, LU Xiaofeng, YANG Wenqi, et al. Simulation of particle concentration distribution in a large-scale circulating fluidized bed boiler at different material-returning deviations[J]. Proceedings of the CSEE, 2020, 40(3): 848-859(in Chinese).

[101] 胡南,徐梦,杨海瑞,等.循环流化床锅炉炉膛横向 温度非均匀性模型研究[J].洁净煤技术,2019,25(2): 102-107.

HU Nan, XU Meng, YANG Hairui, et al. Modeling study on lateral temperature non-uniformity in CFB boiler furnace[J]. Clean Coal Technology, 2019, 25(2): 102-107(in Chinese).

[102] 杜佳军,李井峰,胡昌华,等. 超临界 600MW 机组 CFB 锅炉 NO_x 排放分布特性实炉试验[J]. 热力发电, 2020, 49(5): 119-125.

DU Jiajun, LI Jingfeng, HU Changhua, et al. Real tests on NO_x emission distribution characteristics of a supercritical 600MW CFB boiler[J]. Thermal Power Generation, 2020, 49(5): 119-125(in Chinese).

[103] ZHOU Wu, ZHAO Changsui, DUAN Lunbo, et al. Two-dimensional computational fluid dynamics simulation of nitrogen and sulfur oxides emissions in a circulating fluidized bed combustor[J]. Chemical Engineering Journal, 2011, 173(2): 564-573.

- [104] XIE Jun, ZHONG Wenqi, SHAO Yingjuan, et al. Simulation of combustion of municipal solid waste and coal in an industrial-scale circulating fluidized bed boiler[J]. Energy & Fuels, 2017, 31(12): 14248-14261.
- [105] GUNGOR A. Prediction of SO₂ and NO_x emissions for low-grade Turkish lignites in CFB combustors [J].
 Chemical Engineering Journal, 2009, 146(3): 388-400.
- [106] KRZYWANSKI J, CZAKIERT T, MUSKALA W, et al. Modeling of solid fuel combustion in oxygen-enriched atmosphere in circulating fluidized bed boiler: part 2. numerical simulations of heat transfer and gaseous pollutant emissions associated with coal combustion in O₂/CO₂ and O₂/N₂ atmospheres enriched with oxygen under circulating fluidized bed conditions[J]. Fuel Processing Technology, 2010, 91(3): 364-368.

在线出版日期: 2020-10-29。 收稿日期: 2020-07-29。 作者简介:

柯希玮(1994),男,博士研究生,主要 从事洁净煤技术开发与研究,kxw16@ mails.tsinghua.edu.cn;

^{*}通信作者, 张缦(1971), 女, 副教授, 长期从事煤燃烧和循环流化床技术研究, zhangman@ mail.tsinghua.edu.cn。

(责任编辑 王庆霞)

Research Progress on the Characteristics of NO_x Emission in Circulating Fluidized Bed Boiler

KE Xiwei¹, ZHANG Man^{1*}, YANG Hairui¹, LYU Junfu¹, GUO Xuemao², LI Jun², HE Huibao² (1. Tsinghua University; 2. Taiyuan Boiler Group Co. Ltd.)

KEY WORDS: circulating fluidized bed; NOx; influencing factors; low-NOx combustion; research progress

Circulating fluidized bed (CFB) boilers have the prominent low-NO_x emission potentiality because of the inherent reducing conditions inside furnace. However, since the pollutant emission standards for coal combustion become increasingly strict in China, it is important to optimize the performance of low-NO_x combustion so that to maintain the competitive advantage of the CFB boiler technology in low-cost pollution control. For this purpose, it is necessary to further understand the NO_x formation mechanism and the characteristics of NO_x emission in a CFB boiler.

The fuel- NO_x takes the vast majority of the NO_x produced in a CFB boiler and most of it is NO. The reaction paths of fuel nitrogen to NO_x can be divided into four main parts: fuel devolatilization, homogeneous reactions involving volatile-N oxidation, char reactions including char-N oxidation and the catalytic reactions over some other solid particles such as ash and limestone. The reactivity of these reactions as well as the NO_x formation is related to the fuel properties, while, the original NO_x emission is also highly affected by the boiler performance and operation conditions.

Fig.1 shows the relationships between several design or operation parameters and NO_x emission for the CFB boiler. It indicates that the change of any factor, such as feeding particle size, air staging and cyclone efficiency, etc., may has significant effects on the

atmosphere, temperature distribution and fluidization state inside furnace, and then affects the nitrogen containing reactions' rate and the final NO_x emission. Studying these relationships and exploring the optimal combination of operation parameters is exactly the key to approach low- NO_x combustion for the CFB boiler.

Decreasing the bed temperature by approximately arranging the heating surface and maintaining the relatively low oxygen content in furnace through adjusting the excess air coefficient and air staging can effectively inhibit the formation of NO_x . It is realized mainly by improving the performance of circulating loop including improving cyclone efficiency or properly decreasing the feeding coal size. For the large-scale CFB boilers, reasonably arranging the air and coal injections is important to improve the uniformity of gas-solid two-phase flow and combustion state in furnace, which is also beneficial to control the NO_x concentration in flue The application of limestone for in-situ gas. desulphurization in general increases the original NO_x emission. How to decouple the contradiction between high efficiency desulfurization and de- NO_x combustion is still a big challenge in engineering. Finally, the key scientific issues and the future research directions related with NO_x emission of CFB combustion technology are discussed in this paper.

Fig. 1 Relationships between several design or operation parameters and NO_x emission in the CFB boiler

S15