张金龙, 佟微, 漆汉宏, 张纯江. 平方根采样点卡尔曼滤波在磷酸铁锂电池组荷电状态估算中的应用[J]. 中国电机工程学报, 2016, 36(22): 6246-6253. DOI: 10.13334/j.0258-8013.pcsee.160226
引用本文: 张金龙, 佟微, 漆汉宏, 张纯江. 平方根采样点卡尔曼滤波在磷酸铁锂电池组荷电状态估算中的应用[J]. 中国电机工程学报, 2016, 36(22): 6246-6253. DOI: 10.13334/j.0258-8013.pcsee.160226
ZHANG Jinlong, TONG Wei, QI Hanhong, ZHANG Chunjiang. Application of Square Root Sigma Point Kalman Filter to SOC Estimation of Li FePO_4 Battery Pack[J]. Proceedings of the CSEE, 2016, 36(22): 6246-6253. DOI: 10.13334/j.0258-8013.pcsee.160226
Citation: ZHANG Jinlong, TONG Wei, QI Hanhong, ZHANG Chunjiang. Application of Square Root Sigma Point Kalman Filter to SOC Estimation of Li FePO_4 Battery Pack[J]. Proceedings of the CSEE, 2016, 36(22): 6246-6253. DOI: 10.13334/j.0258-8013.pcsee.160226

平方根采样点卡尔曼滤波在磷酸铁锂电池组荷电状态估算中的应用

Application of Square Root Sigma Point Kalman Filter to SOC Estimation of Li FePO_4 Battery Pack

  • 摘要: 荷电状态(state of charge,SOC)估算技术是锂电池管理系统中最重要的功能之一。针对磷酸铁锂电池组展开研究,以准确估计电池组中各单体荷电状态为目的,首先采用一阶戴维南(Thevenin)模型结合安时法建立综合电池模型;采用一种平方根采样点卡尔曼滤波(square root sigma point Kalman filter,SRSPKF)方法,配合在线递推最小二乘(recursive least square,RLS)算法,同时实现对电池等效模型参数的辨识以及对电池荷电状态的估算。理论上讲,SRSPKF算法使系统状态直接以其方差的平方根形式传播,可显著降低常规Sigma点卡尔曼滤波器(sigma points Kalman filter,SPKF)算法的复杂性。实验结果表明,相对SPKF而言,SRSPKF具有更强的状态估计误差抑制能力,采用SRSPKF可以获得比SPKF更准确的SOC估计结果。

     

    Abstract: State of charge(SOC) estimation technique is one of the most important functions of battery management system. The main purpose of this paper is to accurately estimate SOC of each cell in the series connected Li FePO4 battery pack. Firstly a comprehensive battery model was established based on Thevenin model and Ah counting model; and then a square root sigma point Kalman filter(SRSPKF) was adopted for SOC estimation, besides, a recursive least square(RLS) algorithm was also used to identify model parameters, in this way, model parameter identification and SOC estimation can be realized simultaneously by combined SPKF-RLS method. Theoretically speaking, by using SRSPKF, the system states were propagated in the form of square root of its variance, and thus the computation complexity of conventional SPKF can be significantly reduced. Experimental results show that, compared with SPKF, SRSPKF possesses a stronger error suppression capability of state estimation, and more accurate SOC estimation results can be obtained by SRSPKF.

     

/

返回文章
返回