张秦玮, 张筱松, 邓美隆. 一种新型化学链制氢与SOFC集成的能量系统[J]. 中国电机工程学报, 2021, 41(5): 1804-1810. DOI: 10.13334/j.0258-8013.pcsee.200559
引用本文: 张秦玮, 张筱松, 邓美隆. 一种新型化学链制氢与SOFC集成的能量系统[J]. 中国电机工程学报, 2021, 41(5): 1804-1810. DOI: 10.13334/j.0258-8013.pcsee.200559
ZHANG Qinwei, ZHANG Xiaosong, DENG Meilong. A Novel System Integrating Chemical-looping Hydrogen Generation and Solid Oxide Fuel Cell[J]. Proceedings of the CSEE, 2021, 41(5): 1804-1810. DOI: 10.13334/j.0258-8013.pcsee.200559
Citation: ZHANG Qinwei, ZHANG Xiaosong, DENG Meilong. A Novel System Integrating Chemical-looping Hydrogen Generation and Solid Oxide Fuel Cell[J]. Proceedings of the CSEE, 2021, 41(5): 1804-1810. DOI: 10.13334/j.0258-8013.pcsee.200559

一种新型化学链制氢与SOFC集成的能量系统

A Novel System Integrating Chemical-looping Hydrogen Generation and Solid Oxide Fuel Cell

  • 摘要: 提出了一种化学链制氢(chemical looping hydr-ogen,CLH)与固体氧化物燃料电池(solid oxide fuel, SOFC)相结合的新型发电系统,并利用㶲分析法研究了该新型发电循环。在该系统中,氢气由化学链制氢子系统产生,循环材料是FeO和Fe3O4。固体氧化物燃料电池的余热在化学链制氢子系统中被利用,并通过化学链中的还原反应转化为化学能。在㶲平衡的基础上进行了系统关键参数的分析,并对化学链关键过程进行了研究。同时,由于化学链可以实现CO2无能耗的分离,新系统可以在分离二氧化碳的条件下实现净效率61.2%。㶲分析法表明,新系统获得高性能的主要原因是废热的梯级利用和高效制氢。结果表明,这种新型的热循环是实现甲烷化学能高效利用同时实现低能耗分离CO2的有效途径。

     

    Abstract: In this paper, a novel system integrating chemical looping hydrogen (CLH) generation and solid oxide fuel cell (SOFC) has been proposed. The new methane-fueled cycle has been investigated with the aid of the exergy analysis. Hydrogen is produced in the CLH, in which FeO and Fe3O4 are used as the looping material, to feed the SOFC. Waste heat from the SOFC is utilized in the CLH, and converted to chemical energy through the reduction reaction of CLH. Sensitivity analysis is conducted as well on the basis of exergy balance. Meanwhile, the cycle is environmentally superior because of the recovery of CO2 without an energy penalty. The new system can achieve 61.2% net efficiency with CO2 separation, more than 10 percentage points higher than a methane reforming fueled SOFC system. Through the aid of the exergy principle (energy utilization diagram methodology), the cascade utilization of waste heat and the high-efficiency hydrogen production is the main reason of high performance. The Promising results obtained here indicate that this novel thermal cycle is a promising approach to accomplish the efficient utilization of chemical energy of methane without decrease in thermal efficiency for CO2 removal.

     

/

返回文章
返回