王铮澄, 周艳真, 郭庆来, 孙宏斌. 考虑电力系统拓扑变化的消息传递图神经网络暂态稳定评估[J]. 中国电机工程学报, 2021, 41(7): 2341-2349. DOI: 10.13334/j.0258-8013.pcsee.202139
引用本文: 王铮澄, 周艳真, 郭庆来, 孙宏斌. 考虑电力系统拓扑变化的消息传递图神经网络暂态稳定评估[J]. 中国电机工程学报, 2021, 41(7): 2341-2349. DOI: 10.13334/j.0258-8013.pcsee.202139
WANG Zhengcheng, ZHOU Yanzhen, GUO Qinglai, SUN Hongbin. Transient Stability Assessment of Power System Considering Topological Change: a Message Passing Neural Network-based Approach[J]. Proceedings of the CSEE, 2021, 41(7): 2341-2349. DOI: 10.13334/j.0258-8013.pcsee.202139
Citation: WANG Zhengcheng, ZHOU Yanzhen, GUO Qinglai, SUN Hongbin. Transient Stability Assessment of Power System Considering Topological Change: a Message Passing Neural Network-based Approach[J]. Proceedings of the CSEE, 2021, 41(7): 2341-2349. DOI: 10.13334/j.0258-8013.pcsee.202139

考虑电力系统拓扑变化的消息传递图神经网络暂态稳定评估

Transient Stability Assessment of Power System Considering Topological Change: a Message Passing Neural Network-based Approach

  • 摘要: 近年来,数据驱动相关方法已经在电力系统暂态稳定评估等领域得到了广泛的应用。然而,传统数据驱动方法大多用于分析欧式数据,对电网拓扑连接关系的刻画受限,导致传统方法在新拓扑下的应用泛化能力不足。为此,该文基于消息传递图神经网络(message passing neural network,MPNN),提出一种基于稳态数据的电力系统暂态稳定评估方法。通过图数据处理和拓扑连接关系建模,训练得到能够描述电力系统拓扑变化的暂态稳定性评估模型。论文在新英格兰39节点系统上进行全面的仿真,生成包含600多种拓扑在内的百万级别样本数据。算例分析表明,与传统数据驱动方法相比,所提方法在面对拓扑频繁变化的运行场景数据集上具有更好的性能,对未学习过的新拓扑具有更强的泛化能力。

     

    Abstract: In recent years, the data-driven methods have been widely used in transient stability assessment. However, the traditional data-driven methods are mostly used to analyze European data, and the description of power system topology is relatively limited, leading to the insufficient generalization ability of traditional methods in the case of frequent topological changes. In this paper, we introduced the message passing neural network (MPNN)-based approach for fast transient stability assessment of power system which is based on the steady state data. Through graph data processing and topological modeling, a transient stability assessment model which can describe the topological changes of power system was obtained. The proposed method has promising performance on the dataset with frequent topological changes, and can generalize to new topologies better than other data-driven methods. A comprehensive case study covering more than 600 topologies with more than one million simulation samples on New England 39-bus system validated the proposed method.

     

/

返回文章
返回