樊亚翔, 肖飞, 许杰, 杨国润, 唐欣. 基于充电电压片段和核岭回归的锂离子电池SOH估计[J]. 中国电机工程学报, 2021, 41(16): 5661-5669. DOI: 10.13334/j.0258-8013.pcsee.201805
引用本文: 樊亚翔, 肖飞, 许杰, 杨国润, 唐欣. 基于充电电压片段和核岭回归的锂离子电池SOH估计[J]. 中国电机工程学报, 2021, 41(16): 5661-5669. DOI: 10.13334/j.0258-8013.pcsee.201805
FAN Yaxiang, XIAO Fei, XU Jie, YANG Guorun, TANG Xin. State of Health Estimation of Lithium-ion Batteries Based on the Partial Charging Voltage Segment and Kernel Ridge Regression[J]. Proceedings of the CSEE, 2021, 41(16): 5661-5669. DOI: 10.13334/j.0258-8013.pcsee.201805
Citation: FAN Yaxiang, XIAO Fei, XU Jie, YANG Guorun, TANG Xin. State of Health Estimation of Lithium-ion Batteries Based on the Partial Charging Voltage Segment and Kernel Ridge Regression[J]. Proceedings of the CSEE, 2021, 41(16): 5661-5669. DOI: 10.13334/j.0258-8013.pcsee.201805

基于充电电压片段和核岭回归的锂离子电池SOH估计

State of Health Estimation of Lithium-ion Batteries Based on the Partial Charging Voltage Segment and Kernel Ridge Regression

  • 摘要: 电池健康状况的在线估计对于电池管理系统一直是一个非常重要的问题。近年来,由于其具有灵活性和无模型优势,基于数据驱动的方法在在线健康状态(state of health,SOH)估计领域展现出极大的潜力。文中针对现有的大部分基于数据驱动的SOH估计方法存在计算量大以及较难在BMS微控制器中实现等问题,提出一种采用片段充电曲线和核岭回归(kernel ridge regression,KRR)的锂离子电池SOH估计方法。KRR是一种基于核方法的非线性回归算法,通过将核技巧与岭回归结合,能够建立充电电压片段和SOH之间的非线性映射关系。在2个公开锂离子电池老化数据集上的实验表明,该方法只需采用实际电池使用工况中容易获得的充电电压片段,就能够实现快速准确的SOH估计,并且应用到现有的BMS微控制器中。

     

    Abstract: The online estimation of battery state-of-health (SOH) is an ever significant issue for the battery management system. Recently, due to its advantages such as model-free and flexibility, data-driven based methods are promising for online SOH estimation. Aiming at the problems of heavy computing burden and difficulty in implementing for microcontroller of the existing battery SOH estimating methods, a novel estimation approach based on the partial charging voltage segment and kernel ridge regression (KRR) for the SOH of lithium-ion batteries was proposed. KRR combines ridge regression with the kernel trick, which thus learns a non-linear function between the partial charging voltage segment and lithium-ion batteries SOH by the respective kernel and the data. The experimental results on two lithium-ion battery degradation datasets show that the proposed method can achieve fast and accurate SOH estimation, which can be further applied to existing BMS only by adopting partial charging voltage curve segments that could be easily obtained in actual working condition.

     

/

返回文章
返回