叶圣永, 王晓茹, 刘志刚, 钱清泉. 基于支持向量机的暂态稳定评估双阶段特征选择[J]. 中国电机工程学报, 2010, 30(31): 28-34. DOI: 10.13334/j.0258-8013.pcsee.2010.31.006
引用本文: 叶圣永, 王晓茹, 刘志刚, 钱清泉. 基于支持向量机的暂态稳定评估双阶段特征选择[J]. 中国电机工程学报, 2010, 30(31): 28-34. DOI: 10.13334/j.0258-8013.pcsee.2010.31.006
YE Sheng-yong, WANG Xiao-ru, LIU Zhi-gang, QIAN Qing-quan. Dual-stage Feature Selection for Transient Stability Assessment Based on Support Vector Machine[J]. Proceedings of the CSEE, 2010, 30(31): 28-34. DOI: 10.13334/j.0258-8013.pcsee.2010.31.006
Citation: YE Sheng-yong, WANG Xiao-ru, LIU Zhi-gang, QIAN Qing-quan. Dual-stage Feature Selection for Transient Stability Assessment Based on Support Vector Machine[J]. Proceedings of the CSEE, 2010, 30(31): 28-34. DOI: 10.13334/j.0258-8013.pcsee.2010.31.006

基于支持向量机的暂态稳定评估双阶段特征选择

Dual-stage Feature Selection for Transient Stability Assessment Based on Support Vector Machine

  • 摘要: 针对电力系统暂态稳定评估的高维性,在构造一组与系统规模无关的原始特征集基础上,提出一种支持向量机双阶段特征选择方法。第1阶段以支持向量机递归特征选择法对原始特征集进行排序,消去对分类不重要的特征,得到一组降维的特征集;第2阶段以径向基核支持向量机为分类器的包装法,用最佳优先搜索算法得到一组近似最优特征子集。最后,在新英格兰39节点和IEEE50机测试系统上,对原始特征集使用所提的特征选择方法,仿真结果证明所提方法的有效性。同时,采用支持向量机双阶段特征选择法得到的特征子集对其他暂态稳定评估模型同样有效。

     

    Abstract: Regarding to high dimensionality in power system transient stability assessment,an original feature set was set up,which is irrelevant to system scale. A dual-stage feature selection method based on support vector machine was proposed. During the first stage,the original features are sorted using support vector machine recursive feature elimination method and removed of those behind. Then a group of dimension reduction features is gained. For the second stage,the wrapper method that uses radial basis function kernel support vector machine as classifier is adopted,and a near-optimal feature subset is obtained through best-first search. Finally,in New England 39-bus test system and IEEE 50-generator test system,the feature selection approach was applied in original feature sets and simulation results approved the approach’s effectiveness. Meanwhile,the feature subsets obtained by the dual-stage feature selection,are also valid for other transient stability assessment models.

     

/

返回文章
返回