李建林, 李雅欣, 陈光, 吕超, 武亦文, 徐亮, 马速良. 退役动力电池健康状态特征提取及评估方法综述[J]. 中国电机工程学报, 2022, 42(4): 1332-1346. DOI: 10.13334/j.0258-8013.pcsee.210650
引用本文: 李建林, 李雅欣, 陈光, 吕超, 武亦文, 徐亮, 马速良. 退役动力电池健康状态特征提取及评估方法综述[J]. 中国电机工程学报, 2022, 42(4): 1332-1346. DOI: 10.13334/j.0258-8013.pcsee.210650
LI Jianlin, LI Yaxin, CHEN Guang, LYU Chao, WU Yiwen, XU Liang, MA Suliang. Research on Feature Extraction and SOH Evaluation Methods for Retired Power Battery[J]. Proceedings of the CSEE, 2022, 42(4): 1332-1346. DOI: 10.13334/j.0258-8013.pcsee.210650
Citation: LI Jianlin, LI Yaxin, CHEN Guang, LYU Chao, WU Yiwen, XU Liang, MA Suliang. Research on Feature Extraction and SOH Evaluation Methods for Retired Power Battery[J]. Proceedings of the CSEE, 2022, 42(4): 1332-1346. DOI: 10.13334/j.0258-8013.pcsee.210650

退役动力电池健康状态特征提取及评估方法综述

Research on Feature Extraction and SOH Evaluation Methods for Retired Power Battery

  • 摘要: 我国电动汽车动力电池退役高峰来临,电池梯次利用技术备受学术界和产业界的高度关注。与新电池相比,退役电池(retired battery,RB)一致性差、性能离散度高、安全隐患大,并且从电池单体、模块、电池簇到储能系统逐层集成过程中,上述问题会叠加、放大,导致系统整体性能不确定性增大。为实现退役动力电池安全可靠、规模化、多场景梯次利用,研究基于RB衰退机理的特征提取及健康状态评估技术非常关键。该文基于退役电池的性能衰退规律、电池安全状态演变机理,重点对RB健康状态特征参量表征和残值评估方法进行综述,分别从数据驱动方式以及模型驱动2个维度对提取RB特征和健康评估进行总结分析,提高基于RB衰退规律的退役电池健康状态和残值评估模型精度,对RB特征提取以及健康状态评估未来的研究方向进行展望。

     

    Abstract: With the coming of the peak of electric vehicle power battery retirement, the battery cascade utilization energy storage technology is highly concerned by both academia and industry. Compared with new batteries, retired batteries have poor consistency, high performance dispersion, and high safety risks. In the process of layer-by-layer integration from battery cells, modules, battery clusters to energy storage systems, the above problems will be superimposed and amplified, resulting in the overall system Increased performance uncertainty. Based on the performance decay law and safety state evolution mechanism of decommissioned batteries, this paper focused on the overview of the characterization and residual value evaluation methods of the health status of decommissioned batteries. The characteristics and health evaluation of decommissioned batteries were extracted from two dimensions: data-driven and model-driven. The research conducted a summary analysis, improved the accuracy of the retired battery health evaluation model through the digital-analog hybrid drive method, and looked forward to the research direction of feature extraction and health assessment of decommissioned batteries.

     

/

返回文章
返回