张书琦, 赵义焜, 文韬, 赵毅, 李元, 郑华龙, 罗亮, 张广金. 变压器油中电弧故障动态压力规律与仿真技术研究综述[J]. 中国电机工程学报, 2025, 45(9): 3357-3369. DOI: 10.13334/j.0258-8013.pcsee.242464
引用本文: 张书琦, 赵义焜, 文韬, 赵毅, 李元, 郑华龙, 罗亮, 张广金. 变压器油中电弧故障动态压力规律与仿真技术研究综述[J]. 中国电机工程学报, 2025, 45(9): 3357-3369. DOI: 10.13334/j.0258-8013.pcsee.242464
ZHANG Shuqi, ZHAO Yikun, WEN Tao, ZHAO Yi, LI Yuan, ZHENG Hualong, LUO Liang, ZHANG Guangjin. Research Review on Transient Pressure Law and Simulation Technology of Arc Fault in Transformer Oil[J]. Proceedings of the CSEE, 2025, 45(9): 3357-3369. DOI: 10.13334/j.0258-8013.pcsee.242464
Citation: ZHANG Shuqi, ZHAO Yikun, WEN Tao, ZHAO Yi, LI Yuan, ZHENG Hualong, LUO Liang, ZHANG Guangjin. Research Review on Transient Pressure Law and Simulation Technology of Arc Fault in Transformer Oil[J]. Proceedings of the CSEE, 2025, 45(9): 3357-3369. DOI: 10.13334/j.0258-8013.pcsee.242464

变压器油中电弧故障动态压力规律与仿真技术研究综述

Research Review on Transient Pressure Law and Simulation Technology of Arc Fault in Transformer Oil

  • 摘要: 特高压变压器是电力系统中的核心设备,当变压器油中发生电弧故障时,变压器油分解产生气体造成油箱内压力陡升,并引发爆燃事故,造成恶劣影响。该文旨在探讨特高压变压器油中电弧故障后的压力产生机制、传递机理及变化规律。首先,总结现有的油中电弧故障压力规律和压力仿真技术,从波形影响因素、传递影响因素及动边界的影响3个方面研究压力规律。其次,从冲击波、气泡脉动压力和静压力3个阶段分析压力仿真技术。最后,明确气-液-固耦合的全过程压力仿真计算方法对于模拟变压器燃爆过程具有更佳效果。该方法综合考虑电弧产气、气体运动产生压力,以及压力与油箱动边界相互作用的过程,建立三者之间的耦合算法。该文研究可为压力仿真计算、变压器防爆设计提供一定参考。

     

    Abstract: Ultra-high voltage (UHV) transformers are critical equipment of power systems. Arc faults in transformer oil induce rapid oil decomposition, generating gaseous byproducts that create sudden pressure surges within the tank, potentially leading to destructive explosions with significant consequences. This study reviews existing research on pressure characteristics and simulation techniques related to arc faults in transformer oil. It explores pressure characteristics from three perspectives: pressure waveforms influencing factors, pressure transmission affecting factors, and the impact of dynamic boundaries. Pressure simulation techniques are analyzed in three stages: shock waves, bubble pulsation pressure, and static pressure. Finally, the gas-liquid-solid coupled simulation method for full-process pressure analysis is proposed. This method accounts for gas generation by the arc, pressure effects from gas movement, and interactions with the transformer's dynamic boundaries. A corresponding tripartite coupling algorithm is established. This study provides a reference for guiding pressure simulation analysis and improving explosion-proof design in transformers.

     

/

返回文章
返回