成润坤, 王辉, 刘达, 马一琳, 杨迪. 融合RSDE框架与KAN算法的现货电价异质模型集成预测[J]. 中国电机工程学报, 2024, 44(24): 9645-9657. DOI: 10.13334/j.0258-8013.pcsee.242369
引用本文: 成润坤, 王辉, 刘达, 马一琳, 杨迪. 融合RSDE框架与KAN算法的现货电价异质模型集成预测[J]. 中国电机工程学报, 2024, 44(24): 9645-9657. DOI: 10.13334/j.0258-8013.pcsee.242369
CHENG Runkun, WANG Hui, LIU Da, MA Yilin, YANG Di. Ensemble Prediction of Spot Electricity Prices Using Heterogeneous Models by Integrating the RSDE Framework and KAN Algorithm[J]. Proceedings of the CSEE, 2024, 44(24): 9645-9657. DOI: 10.13334/j.0258-8013.pcsee.242369
Citation: CHENG Runkun, WANG Hui, LIU Da, MA Yilin, YANG Di. Ensemble Prediction of Spot Electricity Prices Using Heterogeneous Models by Integrating the RSDE Framework and KAN Algorithm[J]. Proceedings of the CSEE, 2024, 44(24): 9645-9657. DOI: 10.13334/j.0258-8013.pcsee.242369

融合RSDE框架与KAN算法的现货电价异质模型集成预测

Ensemble Prediction of Spot Electricity Prices Using Heterogeneous Models by Integrating the RSDE Framework and KAN Algorithm

  • 摘要: 随着电力市场不断发展,现货电价的精准预测对于市场交易和电网调度至关重要。然而,由于现货电价易受多种因素交织影响,其价格序列呈现出高度非平稳性、复杂性和周期性波动特征,给电价预测带来挑战。现有模型在挖掘电价波动规律,捕捉电价序列的局部和全局特征以及多频信号的复杂波动模式方面能力不足,预测精度有待提升。为应对上述问题,该文提出一种融合基于重构的二次分解-集成(reconstruction-based secondary decomposition-ensemble,RSDE)框架和科尔莫戈洛夫-阿诺尔德网络(Kolmogorov- Arnold networks,KAN)算法的异质深度学习集成预测方法,旨在从多角度挖掘不同频域信号的局部和全局信息,来提升电价预测精度。首先,RSDE框架将现货电价信号分解为高、中、低频重构子信号及其二次分解子信号;其次,引入KAN算法的深度学习模型针对不同频域的重构子序列进行建模预测;最后,通过自适应加权回归集成各模型的预测结果,得到最终电价预测值。基于澳大利亚电力现货市场的数据实证分析表明,所提方法在捕捉价格波动特征方面具有一定优势,预测性能优于基准模型,可为电力市场参与者提供可靠的决策支持。

     

    Abstract: Accurate forecasting of spot prices is crucial for market trading and grid dispatch. However, influenced by multiple intertwined factors, spot price series that exhibit high non-stationarity and complex periodic patterns, posing challenges for price forecasting. It is difficult for existing models to capture the intricate dynamics of price fluctuations, including the local and global characteristics of the price series and the complex patterns of multi-frequency signals. This paper proposes a heterogeneous deep learning ensemble prediction method that integrates the reconstruction-based secondary decomposition-ensemble(RSDE) framework and Kolmogorov- Arnold networks(KAN) algorithm, aiming to improve electricity price prediction accuracy by extracting local and global characteristics from different frequency domain signals comprehensively. First, the RSDE framework is introduced to make the original price signal into reconstructed sub-signals and related secondary decomposition sub-signals in high, medium, and low-frequency domains. Second, the KAN is incorporated into the deep learning model, applying prediction strategies from the RSDE framework to model and predict the reconstructed sub-sequences using various models. Finally, final prediction is obtained by integrating the prediction results of all reconstructed signals using adaptive weighted regression. An empirical analysis using electricity spot market price data from Australia demonstrates the priority of the proposed model, which outperforms the benchmark models in capturing complex fluctuation features.

     

/

返回文章
返回