谢桦, 李凯, 郄靖彪, 张沛, 王珍意, 路学刚. 基于生成对抗网络修正的源网荷储协同优化调度[J]. 中国电机工程学报, 2025, 45(5): 1668-1679. DOI: 10.13334/j.0258-8013.pcsee.242233
引用本文: 谢桦, 李凯, 郄靖彪, 张沛, 王珍意, 路学刚. 基于生成对抗网络修正的源网荷储协同优化调度[J]. 中国电机工程学报, 2025, 45(5): 1668-1679. DOI: 10.13334/j.0258-8013.pcsee.242233
XIE Hua, LI Kai, QIE Jingbiao, ZHANG Pei, WANG Zhenyi, LU Xuegang. Cooperative Optimal Scheduling of Source-grid-load-storage Based on Generative Adversarial Network Modification[J]. Proceedings of the CSEE, 2025, 45(5): 1668-1679. DOI: 10.13334/j.0258-8013.pcsee.242233
Citation: XIE Hua, LI Kai, QIE Jingbiao, ZHANG Pei, WANG Zhenyi, LU Xuegang. Cooperative Optimal Scheduling of Source-grid-load-storage Based on Generative Adversarial Network Modification[J]. Proceedings of the CSEE, 2025, 45(5): 1668-1679. DOI: 10.13334/j.0258-8013.pcsee.242233

基于生成对抗网络修正的源网荷储协同优化调度

Cooperative Optimal Scheduling of Source-grid-load-storage Based on Generative Adversarial Network Modification

  • 摘要: 大规模风光可再生能源发电并网给电力系统带来强不确定性,使得系统全局优化决策面临挑战,该文提出基于生成对抗网络(generative adversarial networks,GAN)修正的源网荷储协同优化调度策略设计方法。首先,考虑新型电力系统中各类可调节资源的运行特性,构建基于近端策略优化(proximal policy optimization,PPO)算法的源网荷储协同优化调度模型;其次,引入GAN对PPO算法的优势函数进行修正,减少价值函数的方差,提高智能体探索效率;然后,GAN中的判别器结合专家策略指导生成器生成调度策略;最后,判别器与生成器不断对抗寻找纳什均衡点,得到优化调度策略。算例分析表明,设计的源网荷储协同的日内优化调度策略,采用GAN修正的PPO算法,相较于传统的PPO算法缩短了训练过程的收敛时间,在线控制提升了可再生能源消纳能力。

     

    Abstract: The integration of large-scale wind and solar renewable energy generation into the power grid introduces significant uncertainty, which makes the global optimization decision of the system face challenges. This paper proposes a design method of cooperative optimal scheduling strategy of source-grid-load-storage based on generative adversarial network (GAN) modification. Firstly, considering the operation characteristics of various adjustable resources in the new power system, a cooperative optimal scheduling model of source-grid-load-storage based on proximal policy optimization (PPO) algorithm is constructed. Secondly, the GAN is introduced to modify the advantage function of the PPO algorithm, which reduced the variance of the value function and improved the efficiency of agent exploration. Then, the discriminator in the GAN is combined with the expert strategy to guide the generator to generate the scheduling strategy. Finally, discriminator constantly confronted the generator to find the Nash equilibrium point, and got the optimal scheduling strategy. The analysis of an example shows that the intra-day optimal scheduling strategy designed in this paper adopts the proximal policy optimization based on correction of the generative adversarial networks algorithm, which shortens the convergence time of the training process compared with the traditional PPO algorithm, and improves the absorptive capacity of renewable energy through online control.

     

/

返回文章
返回