袁警特, 邱高, 刘友波, 刘挺坚, 唐志远, 刘俊勇. 基于变分自编码神经常微分方程的电-气耦合系统长动态稳定快速推演技术[J]. 中国电机工程学报, 2025, 45(10): 3737-3751. DOI: 10.13334/j.0258-8013.pcsee.240804
引用本文: 袁警特, 邱高, 刘友波, 刘挺坚, 唐志远, 刘俊勇. 基于变分自编码神经常微分方程的电-气耦合系统长动态稳定快速推演技术[J]. 中国电机工程学报, 2025, 45(10): 3737-3751. DOI: 10.13334/j.0258-8013.pcsee.240804
YUAN Jingte, QIU Gao, LIU Youbo, LIU Tingjian, TANG Zhiyuan, LIU Junyong. A Variational Neural Ordinary Differential Equation-based Fast Inference for Long-term Dynamic Stability of Integrated Electricity-gas System[J]. Proceedings of the CSEE, 2025, 45(10): 3737-3751. DOI: 10.13334/j.0258-8013.pcsee.240804
Citation: YUAN Jingte, QIU Gao, LIU Youbo, LIU Tingjian, TANG Zhiyuan, LIU Junyong. A Variational Neural Ordinary Differential Equation-based Fast Inference for Long-term Dynamic Stability of Integrated Electricity-gas System[J]. Proceedings of the CSEE, 2025, 45(10): 3737-3751. DOI: 10.13334/j.0258-8013.pcsee.240804

基于变分自编码神经常微分方程的电-气耦合系统长动态稳定快速推演技术

A Variational Neural Ordinary Differential Equation-based Fast Inference for Long-term Dynamic Stability of Integrated Electricity-gas System

  • 摘要: 电-气耦合系统(integrated electricity-gas system,IEGS)故障传播呈现多尺度动态、双向耦合的复杂特征,传统时域仿真难以实现稳定且快速的跨尺度数值分析,致使IEGS的稳定性分析效率极低。对此,提出一种基于变分自编码神经微分方程(variational neural ordinary differential equation,V-NODE)的IEGS长暂态过程快速精细推演方法。首先,建立考虑电-气网双向响应的IEGS全系统动态仿真模型,利用合成少数类过采样技术构建失稳-稳定样本均衡的受扰轨迹数据集,防止不平衡样本空间下神经常微分方程(neural ordinary differential equation,NODE)过拟合;然后,提出基于变分自编码器的IEGS稳态运行参数和故障后短时轨迹特征的时域嵌入方法,解决多运行方式下NODE的弱泛化问题;最后,提出适应多稳定模式的V-NODE代价敏感学习方法,防止NODE对失步轨迹过拟合。改进电-气耦合系统算例表明,所提方法相比传统仿真方法,长动态稳定性分析效率提升达3个数量级,低于1 s,相比其他时序预测方法,精度显著提升。同时,计及预测误差的可达集分析验证所提方法的有效性与轨迹外推能力。

     

    Abstract: The fault propagation in integrated electricity-gas system(IEGS) exhibits complex features of multi-scale and bidirectional dynamics. Traditional time-domain simulation is difficult to achieve both stable and fast cross-scale numerical analysis, resulting in extremely low efficiency of IEGS stability analysis. To conquer this barrier, a variational neural ordinary differential equation (V-NODE)-based long-term dynamic stability inference method for post-faulted IEGS is proposed. First, involving the interactive responses between power grid and natural gas network, a full-system dynamic simulation model for IEGS is established. Then, synthetic minority over-sampling technique is conducted to settle post-fault response dataset with balanced stable and instable trajectories to prevent NODE overfitting in the unbalanced sample space. Furthermore, variational autoencoder is utilized to embed the steady-state variables of the power grid into time-domain. In this sense, inadequate representability and weak generalizability of conventional NODE on multiple steady equilibrium points can be circumvented. Finally, a V-NODE cost-sensitive learning method adapted to multi-stability modes is proposed to prevent NODE from overfitting the out-of-sync trajectories. The improved IEGS case shows that, compared to traditional ODE-based simulator, our method improves efficiency beyond 3 orders of magnitude, with a second elapsed time. It also beats the data-driven rival with substantial superiority in accuracy. Besides, the reachability analysis considering the V-NODE prediction error has verified the effectiveness and trajectory extrapolation ability of the proposed method.

     

/

返回文章
返回