雷志鹏, 彭川, 许子涵, 姜宛廷, 李传扬, 吝伶艳, 彭邦发. 基于改进Deformable DETR模型的多源局部放电识别方法及其应用[J]. 中国电机工程学报, 2024, 44(15): 6248-6260. DOI: 10.13334/j.0258-8013.pcsee.240009
引用本文: 雷志鹏, 彭川, 许子涵, 姜宛廷, 李传扬, 吝伶艳, 彭邦发. 基于改进Deformable DETR模型的多源局部放电识别方法及其应用[J]. 中国电机工程学报, 2024, 44(15): 6248-6260. DOI: 10.13334/j.0258-8013.pcsee.240009
LEI Zhipeng, PENG Chuan, XU Zihan, JIANG Wanting, LI Chuanyang, LIN Lingyan, PENG Bangfa. Pattern Recognition Methods of Multi-source Partial Discharge Based on the Improved Deformable DETR Model and its Application[J]. Proceedings of the CSEE, 2024, 44(15): 6248-6260. DOI: 10.13334/j.0258-8013.pcsee.240009
Citation: LEI Zhipeng, PENG Chuan, XU Zihan, JIANG Wanting, LI Chuanyang, LIN Lingyan, PENG Bangfa. Pattern Recognition Methods of Multi-source Partial Discharge Based on the Improved Deformable DETR Model and its Application[J]. Proceedings of the CSEE, 2024, 44(15): 6248-6260. DOI: 10.13334/j.0258-8013.pcsee.240009

基于改进Deformable DETR模型的多源局部放电识别方法及其应用

Pattern Recognition Methods of Multi-source Partial Discharge Based on the Improved Deformable DETR Model and its Application

  • 摘要: 基于图像的局部放电识别方法大部分仅对单源局部放电谱图有效,无法识别多源局部放电谱图。为实现对多源局部放电谱图的识别,该文提出一种基于Transformer架构的局部放电Deformable DETR目标检测模型,收集典型单源局部放电和多源局部放电数据,生成局部放电相位角解析和极坐标相位分布解析谱图数据集。在Deformable DETR模型中引入去噪训练任务和贝叶斯优化算法,优化了局部放电目标检测模型;编写局部放电谱图采集和识别程序,并使用优化后的局部放电Deformable DETR模型对单源和多源局部放电谱图进行识别。结果表明:局部放电Deformable DETR模型不仅可有效识别出单源和多源局部放电的类型,而且大幅提升了局部放电类型识别的收敛速度和精度等性能。在对真实绝缘缺陷电动机的局部放电谱图识别中,局部放电Deformable DETR模型的识别准确率达到91%,证明该模型在实际应用中的有效性。

     

    Abstract: Pattern recognition methods of partial discharge (PD) utilizing images are efficient for the single PD source, yet they face challenges in recognizing the multi-source PD. An object detection model is proposed for the recognition of multi-source PD according to Deformable detection with transformers (Deformable DETR). Typical single-source PD and multi-source PD signals are collected by experiment. Two types of PD spectra, namely phase-resolved partial discharge spectrum and polar coordinate phase-resolved spectrum, are used to generate the data set. The denoising training task and Bayesian optimization algorithm are introduced to optimize the performance of the Deformable DETR model. Single-source and multi-source PD spectra are identified by the optimized PD Deformable DETR model. Results show that the proposed model can effectively recognize the source of single- and multi-PD patterns. In addition, compared with common types of object detection models, the performance of the PD Deformable DETR model can be evidently improved at the cost of losing a few efficiencies. Finally, the PD spectra of real motors with insulation defects are identified by the PD Deformable DETR model. The recognition accuracy reaches 91%, which shows the validity of this proposed method. Additionally, the acquisition and recognition program of PD spectrum is developed. The paper provides novel perspectives for identifying multi-source PD.

     

/

返回文章
返回