夏向阳, 岳家辉, 曾小勇, 刘代飞, 陈来恩, 吕崇耿, 夏永凯. 基于状态相依的RBF-ARX模型的锂离子电池剩余容量估计方法[J]. 中国电机工程学报, 2025, 45(2): 638-649. DOI: 10.13334/j.0258-8013.pcsee.232813
引用本文: 夏向阳, 岳家辉, 曾小勇, 刘代飞, 陈来恩, 吕崇耿, 夏永凯. 基于状态相依的RBF-ARX模型的锂离子电池剩余容量估计方法[J]. 中国电机工程学报, 2025, 45(2): 638-649. DOI: 10.13334/j.0258-8013.pcsee.232813
XIA Xiangyang, YUE Jiahui, ZENG Xiaoyong, LIU Daifei, CHEN Lai'en, LYU Chonggeng, XIA Yongkai. The Remaining Capacity Estimation of Battery Based on State-dependent RBF-ARX Model[J]. Proceedings of the CSEE, 2025, 45(2): 638-649. DOI: 10.13334/j.0258-8013.pcsee.232813
Citation: XIA Xiangyang, YUE Jiahui, ZENG Xiaoyong, LIU Daifei, CHEN Lai'en, LYU Chonggeng, XIA Yongkai. The Remaining Capacity Estimation of Battery Based on State-dependent RBF-ARX Model[J]. Proceedings of the CSEE, 2025, 45(2): 638-649. DOI: 10.13334/j.0258-8013.pcsee.232813

基于状态相依的RBF-ARX模型的锂离子电池剩余容量估计方法

The Remaining Capacity Estimation of Battery Based on State-dependent RBF-ARX Model

  • 摘要: 锂离子电池剩余容量估计是电池管理系统中关键技术之一,也是实现锂离子电池安全稳定运行的前提。针对锂离子电池剩余容量有效估计问题,该文提出带外生输入的自回归模型(radial basis function-autoregressive exogenous,RBF-ARX)的锂离子电池剩余容量估计方法,利用结构化非线性参数优化方法辨识模型参数,并将“老化信息”与“能量”相结合,基于小波包能量分析从电池充电电流/电压曲线中直接提取能量特征作为新健康特征,采用传递熵对新健康特征进行筛选以构成模型输入,实现锂离子电池剩余容量的有效估计;最后,基于NASA公开的锂离子电池老化数据,通过不同训练/测试样本比例、不同模型展开综合分析。结果表明,所提出的基于状态相依的RBF-ARX模型的锂离子电池剩余容量估计方法与常用的数据驱动方法相比,误差指标中平均绝对误差、平均绝对百分比误差、均方根误差均保持在较低水平,具有良好的估计精度。

     

    Abstract: Estimating the remaining capacity of lithium-ion batteries is a pivotal technology in battery management systems, serving as a fundamental prerequisite for ensuring the safe and stable operation of these batteries. To effectively estimate the remaining capacity of lithium-ion batteries, this article proposes a method for online estimating the remaining capacity of a lithium-ion battery using Radial Basis Function-Autoregressive Exogenous (RBF-ARX) model with exogenous input. The model parameters are identified using the structured parameter optimization method. The "aging information" and "energy" are combined, and the energy features are directly extracted from the battery charging current/voltage curves as new health factors. Then, transfer entropy is used to select the new health factors to construct the model input, thus achieving effective estimation of the remaining capacity of the lithium-ion battery. Finally, based on the publicly available lithium-ion battery aging data from NASA, comprehensive analysis is conducted using different training/testing sample proportions and different models. The results indicate that the proposed state-dependent RBF-ARX model for estimating the remaining capacity of lithium-ion batteries performs well compared to commonly used data-driven methods. The error metrics, including the mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE), remain at a low level respectively, demonstrating good estimation accuracy.

     

/

返回文章
返回