林文强, 宫金武, 潘尚智, 林子森, 邹辉, 查晓明, 姚良忠. 自举驱动在大电流应用下的故障机理分析及其优化设计研究[J]. 中国电机工程学报, 2025, 45(7): 2768-2778. DOI: 10.13334/j.0258-8013.pcsee.232800
引用本文: 林文强, 宫金武, 潘尚智, 林子森, 邹辉, 查晓明, 姚良忠. 自举驱动在大电流应用下的故障机理分析及其优化设计研究[J]. 中国电机工程学报, 2025, 45(7): 2768-2778. DOI: 10.13334/j.0258-8013.pcsee.232800
LIN Wenqiang, GONG Jinwu, PAN Shangzhi, LIN Zisen, ZOU Hui, ZHA Xiaoming, YAO Liangzhong. An Optimization Method for Parameters of Bootstrap Gate Driver With Fault Mechanism Analysis in High Current Applications[J]. Proceedings of the CSEE, 2025, 45(7): 2768-2778. DOI: 10.13334/j.0258-8013.pcsee.232800
Citation: LIN Wenqiang, GONG Jinwu, PAN Shangzhi, LIN Zisen, ZOU Hui, ZHA Xiaoming, YAO Liangzhong. An Optimization Method for Parameters of Bootstrap Gate Driver With Fault Mechanism Analysis in High Current Applications[J]. Proceedings of the CSEE, 2025, 45(7): 2768-2778. DOI: 10.13334/j.0258-8013.pcsee.232800

自举驱动在大电流应用下的故障机理分析及其优化设计研究

An Optimization Method for Parameters of Bootstrap Gate Driver With Fault Mechanism Analysis in High Current Applications

  • 摘要: 自举栅极驱动器以其所用元件少、成本低等优点,被广泛应用于由开关桥臂构成的变换器中。在大电流变换器中,自举栅极驱动器的参数设计不当,会导致启动时栅源极电压振荡和桥臂直通,增加开关器件、驱动的故障风险和损耗。由于现有自举栅极驱动器的参数设计在大电流应用中缺乏足够的理论指导,文中研究并构建自举栅极驱动电路的详细数学模型,在该模型基础上分析上述故障机理,并得到自举驱动参数设计的安全边界;其次,分析驱动损耗和驱动器参数的关系,进而提出一种兼顾故障保护安全边界和效率提升的通用优化设计方法;最后,通过仿真和实验验证理论分析的准确性和所提方法的可行性。

     

    Abstract: Bootstrap gate drivers are widely used in phase-leg composed converters for their advantages such as less components and low cost. In high current converters, improper parameter design of bootstrap gate driver can lead to start-up gate-source voltage oscillation and phase-leg shoot-through, increasing the risk of devices and drivers failures and driving losses. Due to the lack of sufficient theoretical guidance in the parameters design of bootstrap gate drivers for high current converters, this paper studies and constructs a detailed model of the gate driver. Based on the model, the above fault mechanisms are studied, and the safety boundary for the parameter design of the gate driver is obtained. Then, the relationship between driving loss and the parameters is analyzed, and a universal optimum design method with fault protection and efficiency improvement is proposed. Simulations and experiments verify the accuracy of the theoretical analysis and the feasibility of the proposed approach.

     

/

返回文章
返回