姜楠, 李志阳, 孙新怡, 秦亮, 李杰. 纳米SiO2掺杂协同等离子体氟化改性纤维素绝缘纸[J]. 中国电机工程学报, 2025, 45(8): 3260-3269. DOI: 10.13334/j.0258-8013.pcsee.232775
引用本文: 姜楠, 李志阳, 孙新怡, 秦亮, 李杰. 纳米SiO2掺杂协同等离子体氟化改性纤维素绝缘纸[J]. 中国电机工程学报, 2025, 45(8): 3260-3269. DOI: 10.13334/j.0258-8013.pcsee.232775
JIANG Nan, LI Zhiyang, SUN Xinyi, QIN Liang, LI Jie. Modification of Cellulose Insulating Paper by Nano-SiO2 Doping and Plasma Fluorination[J]. Proceedings of the CSEE, 2025, 45(8): 3260-3269. DOI: 10.13334/j.0258-8013.pcsee.232775
Citation: JIANG Nan, LI Zhiyang, SUN Xinyi, QIN Liang, LI Jie. Modification of Cellulose Insulating Paper by Nano-SiO2 Doping and Plasma Fluorination[J]. Proceedings of the CSEE, 2025, 45(8): 3260-3269. DOI: 10.13334/j.0258-8013.pcsee.232775

纳米SiO2掺杂协同等离子体氟化改性纤维素绝缘纸

Modification of Cellulose Insulating Paper by Nano-SiO2 Doping and Plasma Fluorination

  • 摘要: 随着特高压输电技术的快速发展和大容量电力传输需求的不断增加,绝缘纸在极端环境下的电气性能、机械强度及热稳定性面临着更为严峻的挑战。该文提出纳米SiO2粒子掺杂与等离子体氟化协同改性策略,系统研究协同改性前后绝缘纸的电气性能、机械性能、疏水性能及热老化性能的演变规律,通过扫描电子显微镜(scanning electron microscope,SEM)和能量色散X射线光谱仪(energy dispersive spectrometer,EDS)表征氟化处理后绝缘纸表面形貌与元素分布变化。基于分子动力学模拟,揭示纳米粒子掺杂和含氟基团介质的协同增强机制。结果表明:纳米SiO2粒子掺杂协同等离子体氟化改性可有效限制载流子的运动,显著提升了绝缘纸的绝缘性能。与未改性相比,绝缘纸的击穿场强和体积电阻率分别提高109.2%和134.9%。协同改性处理后,绝缘纸表面接枝了大量含氟基团,显著提升其表面疏水性;同时,含氟基团与纳米SiO2间形成的氢键强化了纳米SiO2与绝缘纸的桥接作用,进而可有效提升绝缘纸的热老化性能。

     

    Abstract: The rapid development of ultra-high voltage (UHV) transmission technology and increasing demand for high-capacity power transmission have imposed stringent requirements on insulating paper, particularly regarding its electrical performance, mechanical strength, and thermal stability under extreme conditions (e.g., high temperatures and intense electric fields). To address these challenges, this study proposes a synergistic modification strategy combining nano-SiO2 particle doping with plasma fluorination. We systematically evaluate changes in electrical, mechanical, hydrophobic, and thermal aging properties of insulating paper before and after modification. Surface characterization using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) reveals significant morphological and elemental changes following fluorination. Molecular dynamics (MD) simulations further elucidate the synergistic enhancement mechanism between nanoparticle doping and fluorine- containing groups. Results demonstrate that the combined modification of nano-SiO2 particles and plasma fluorination effectively restricts charge carrier mobility, significantly improving insulation performance. Compared to unmodified samples, the breakdown strength and volume resistivity of modified insulating paper are increased by 109.2% and 134.9%, respectively. The modified paper surface exhibits abundant grafted fluorine-containing groups, substantially enhancing surface hydrophobicity. Simultaneously, hydrogen bonds formed between fluorine groups and nano-SiO2 particles strengthened interfacial bridging effects, thereby improving thermal aging resistance.

     

/

返回文章
返回