凌志健, 顾友壮, 赵文祥, 吉敬华, 曾煜. 基于能量法的磁场调制电机结构演化及转矩提升机理[J]. 中国电机工程学报, 2025, 45(8): 3236-3247. DOI: 10.13334/j.0258-8013.pcsee.232677
引用本文: 凌志健, 顾友壮, 赵文祥, 吉敬华, 曾煜. 基于能量法的磁场调制电机结构演化及转矩提升机理[J]. 中国电机工程学报, 2025, 45(8): 3236-3247. DOI: 10.13334/j.0258-8013.pcsee.232677
LING Zhijian, GU Youzhuang, ZHAO Wenxiang, JI Jinghua, ZENG Yu. Topology Evolution and Torque Improvement Mechanism of Magnetic Field Modulated Machine Based on Energy Analysis Method[J]. Proceedings of the CSEE, 2025, 45(8): 3236-3247. DOI: 10.13334/j.0258-8013.pcsee.232677
Citation: LING Zhijian, GU Youzhuang, ZHAO Wenxiang, JI Jinghua, ZENG Yu. Topology Evolution and Torque Improvement Mechanism of Magnetic Field Modulated Machine Based on Energy Analysis Method[J]. Proceedings of the CSEE, 2025, 45(8): 3236-3247. DOI: 10.13334/j.0258-8013.pcsee.232677

基于能量法的磁场调制电机结构演化及转矩提升机理

Topology Evolution and Torque Improvement Mechanism of Magnetic Field Modulated Machine Based on Energy Analysis Method

  • 摘要: 磁场调制电机因高转矩密度而受到广泛关注,得益于双边磁场调制效应,双永磁游标(dual-permanent magnet excited vernier,DPMEV)电机拥有更高的转矩密度。然而,由于其调制关系复杂,谐波贡献分析具有一定的困难。因此,提出一种基于能量法的谐波贡献计算方法。首先,以一5/12/19对极DPMEV电机为例进行性能分析,并利用有限元法进行验证,验证结果表明:在定子侧永磁体产生的气隙磁密中,存在部分谐波阶次对反电势产生负贡献。其次,基于所提分析方法,演化出新型DPMEV电机结构,提升电机整体性能。然后,通过谐波相角变化,实现新型DPMEV电机对负贡献谐波的有效利用,进一步提升转矩密度。最后,通过实验验证解析计算和有限元仿真的合理性。

     

    Abstract: Magnetic field modulated machines have attracted significant attention due to their high torque density. Benefiting from dual magnetic field modulation, dual- permanent-magnet-excited vernier (DPMEV) machines exhibit even higher torque density. However, the complex modulation relationships make harmonic contribution analysis challenging. This paper proposes an energy-based harmonic contribution calculation method to address this issue. First, finite element analysis is employed to evaluate a 5/12/19-pole pair DPMEV machine, revealing that certain stator-side permanent magnet-generated air-gap flux density harmonics negatively impact back-EMF. Using the proposed analytical method, an improved DPMEV machine structure is developed to enhance overall performance. By strategically adjusting harmonic phases, the novel design effectively utilizes previously detrimental air-gap flux density harmonics to improve torque density. Experimental results ultimately validate both the analytical calculations and finite element simulations, confirming the method's effectiveness.

     

/

返回文章
返回