金秀章, 赵大勇, 赵术善, 畅晗. 基于相空间重构-深度学习的燃煤电厂主汽温预测模型[J]. 中国电机工程学报, 2025, 45(10): 3924-3933. DOI: 10.13334/j.0258-8013.pcsee.232617
引用本文: 金秀章, 赵大勇, 赵术善, 畅晗. 基于相空间重构-深度学习的燃煤电厂主汽温预测模型[J]. 中国电机工程学报, 2025, 45(10): 3924-3933. DOI: 10.13334/j.0258-8013.pcsee.232617
JIN Xiuzhang, ZHAO Dayong, ZHAO Shushan, CHANG Han. Prediction Model of Main Steam Temperature of Coal-fired Power Plant Based on Phase Space Reconstruction-deep Learning[J]. Proceedings of the CSEE, 2025, 45(10): 3924-3933. DOI: 10.13334/j.0258-8013.pcsee.232617
Citation: JIN Xiuzhang, ZHAO Dayong, ZHAO Shushan, CHANG Han. Prediction Model of Main Steam Temperature of Coal-fired Power Plant Based on Phase Space Reconstruction-deep Learning[J]. Proceedings of the CSEE, 2025, 45(10): 3924-3933. DOI: 10.13334/j.0258-8013.pcsee.232617

基于相空间重构-深度学习的燃煤电厂主汽温预测模型

Prediction Model of Main Steam Temperature of Coal-fired Power Plant Based on Phase Space Reconstruction-deep Learning

  • 摘要: 针对由于火电机组调峰需求导致的燃烧状态不稳定,进而导致主蒸汽温度频繁波动难以预测的问题,该文提出一种基于相空间重构(phase space reconstruction,PSR)的双向门控循环单元(bidirectional gate recurrent unit,biGRU)主蒸汽温度预测模型。首先,利用互信息法筛选相关变量,对其进行相空间重构处理得到输入变量。然后,利用注意力机制(attention mechanism,AM)确定各输入变量权重系数,再利用雪消融优化算法(snow ablation optimizer,SAO)优化biGRU超参数,建立相空间重构-雪消融优化-双向门控循环单元-注意力机制的主汽温预测模型(PSR-SAO-biGRU-AM预测模型)。最后,将该预测模型与未加入注意力机制、未加入SAO寻优算法、未加入相空间重构的模型进行对比验证。结果表明,相较于其他模型,提出的PSR-SAO-biGRU- AM预测模型的均方根误差、平均绝对百分比误差最小,预测精度最高,在主汽温波动剧烈仍能够准确预测,具有很好的动态特性。

     

    Abstract: This paper proposes a bidirectional gate recurrent unit (biGRU) main steam temperature prediction model based on phase space reconstruction (PSR) to address the problem of unstable combustion state caused by peak shaving demand of thermal power units, which makes it difficult to predict frequent fluctuations in main steam temperature. First, the mutual information method is used to screen relevant variables and perform phase space reconstruction to obtain input variables. Then, the Attention Mechanism (AM) is used to determine the weight coefficients of each input variable, and the snow ablation optimization algorithm (SAO) is used to optimize the biGRU hyperparameters. The Phase Space Reconstruction- Snow Ablation Optimization-Bidirectional Gated Recurrent Unit- Attention Mechanism Steam Temperature Prediction Model (PSR-SAO-biGRU-AM Prediction Model) for the bidirectional gated cycle unit is established. Finally, the prediction model is compared and validated with models without attention mechanism, SAO algorithm, and phase space reconstruction. The results show that compared to other models, the PSR- SAO-biGRU-AM prediction model proposed in this paper has the smallest root mean square error and average absolute percentage error, and the highest prediction accuracy. It demonstrates accurate prediction capability even under severe main steam temperature fluctuations, while exhibiting excellent dynamic performance.

     

/

返回文章
返回