陈爱琢, 林恩德, 周杨林, 于琦, 李雨欣, 慈松. 面向动态可重构电池网络的锂离子电池电路模型参数估计方法[J]. 中国电机工程学报, 2025, 45(9): 3484-3492. DOI: 10.13334/j.0258-8013.pcsee.232611
引用本文: 陈爱琢, 林恩德, 周杨林, 于琦, 李雨欣, 慈松. 面向动态可重构电池网络的锂离子电池电路模型参数估计方法[J]. 中国电机工程学报, 2025, 45(9): 3484-3492. DOI: 10.13334/j.0258-8013.pcsee.232611
CHEN Aizuo, LIN Ende, ZHOU Yanglin, YU Qi, LI Yuxin, CI Song. Parameters Estimation Method of Circuit Model for Lithium-ion Batteries in Dynamic Reconfigurable Battery Networks[J]. Proceedings of the CSEE, 2025, 45(9): 3484-3492. DOI: 10.13334/j.0258-8013.pcsee.232611
Citation: CHEN Aizuo, LIN Ende, ZHOU Yanglin, YU Qi, LI Yuxin, CI Song. Parameters Estimation Method of Circuit Model for Lithium-ion Batteries in Dynamic Reconfigurable Battery Networks[J]. Proceedings of the CSEE, 2025, 45(9): 3484-3492. DOI: 10.13334/j.0258-8013.pcsee.232611

面向动态可重构电池网络的锂离子电池电路模型参数估计方法

Parameters Estimation Method of Circuit Model for Lithium-ion Batteries in Dynamic Reconfigurable Battery Networks

  • 摘要: 在电池电路模型参数估计领域中,双线性变换结合最小二乘的方法因展现良好性能而得到广泛关注。然而,在以动态可重构电池网络(dynamic reconfigurable battery network,DRBN)为核心的数字储能系统运行过程中,电池与电力电子开关相互耦合,网络中每个电池的电压和电流响应不仅受到其自身状态的影响,而且还受到网络的拓扑状态、网络中其他电池的状态以及网络输出电流的影响。传统的参数辨识方法只利用了单个电池端电压和端电流的信息,而忽略了网络输出电流和网络拓扑变化的信息。因此,难以适用于DRBN中电池的参数辨识问题。为了克服这一问题,以DRBN的电流观测方程为基础,提出适用于DRBN的电池传递函数的离散化方法,构建与之相应的电池电路模型参数估计模型,并通过牛顿-拉夫逊方法求解该模型的增广拉格朗日方程以获得其最优解。最后,通过实验和数值仿真,验证所提方法的有效性。

     

    Abstract: In battery circuit model parameter estimation, the bilinear transformation method combined with least squares has attracted significant attention owing to its superior performance. However, in digital energy storage systems centered around dynamic reconfigurable battery networks (DRBN), batteries exhibit coupling with power electronic switches, causing each battery's voltage and current responses to depend not only on its own state but also on the network topology, states of other batteries, and network output current. Conventional parameter identification methods solely employ individual battery terminal voltage and current information while neglecting network output current and topology variation data, making them unsuitable for DRBN battery parameter identification. To address this limitation, this paper develops a DRBN-compatible battery transfer function discretization method based on DRBN's current observation equation, establishes the corresponding battery circuit model parameter estimation model, and obtains its optimal solution by solving the model's augmented Lagrangian equation through the Newton-Raphson method. Experimental results and numerical simulations ultimately verify the proposed method's effectiveness.

     

/

返回文章
返回