周芮, 杨燕, 余娟, 杨知方, 朱晟毅, 余亚南, 孙昕炜. 适应拓扑变化的数据驱动电力系统暂态主导失稳模式识别方法[J]. 中国电机工程学报, 2025, 45(9): 3436-3447. DOI: 10.13334/j.0258-8013.pcsee.232437
引用本文: 周芮, 杨燕, 余娟, 杨知方, 朱晟毅, 余亚南, 孙昕炜. 适应拓扑变化的数据驱动电力系统暂态主导失稳模式识别方法[J]. 中国电机工程学报, 2025, 45(9): 3436-3447. DOI: 10.13334/j.0258-8013.pcsee.232437
ZHOU Rui, YANG Yan, YU Juan, YANG Zhifang, ZHU Shengyi, YU Yanan, SUN Xinwei. Data-driven Power System Transient Dominant Instability Mode Identification Method Adapted to Topology Changes[J]. Proceedings of the CSEE, 2025, 45(9): 3436-3447. DOI: 10.13334/j.0258-8013.pcsee.232437
Citation: ZHOU Rui, YANG Yan, YU Juan, YANG Zhifang, ZHU Shengyi, YU Yanan, SUN Xinwei. Data-driven Power System Transient Dominant Instability Mode Identification Method Adapted to Topology Changes[J]. Proceedings of the CSEE, 2025, 45(9): 3436-3447. DOI: 10.13334/j.0258-8013.pcsee.232437

适应拓扑变化的数据驱动电力系统暂态主导失稳模式识别方法

Data-driven Power System Transient Dominant Instability Mode Identification Method Adapted to Topology Changes

  • 摘要: 电力系统暂态电压与功角混合失稳下的主导失稳模式(dominant instability mode,DIM)识别对制定快速调整措施至关重要。然而,现有数据驱动方法因拓扑变化适应能力不足,导致识别精度下降甚至失效。由此,该文提出一种适应拓扑变化的数据驱动DIM识别方法。首先,提出基于K-means聚类和多随机卷积核变换的DIM高精度智能识别基础模型,利用K-means自适应选取关键暂态曲线,基于多随机卷积核变换表征暂态曲线斜率、失稳持续时间等重要DIM判断特征,从而适应拓扑变化并高效提取暂态曲线时序特征。其次,针对单个基础模型输出不确定性、可信度不足问题,提出基于Bagging集成学习和误差-分歧分解理论的DIM智能识别框架,自适应最优选择多个基础模型共同决策,提高结果的稳定性和可信性。最后,在中国电力科学研究院有限公司36节点系统及其修改系统、某实际电网8 897节点系统上的算例分析表明,所提方法可在保证较高DIM识别精度的情况下适应拓扑变化,验证了方法的有效性。

     

    Abstract: The identification of dominant instability modes (DIMs) during combined transient voltage and power angle instability is critical for implementing timely power system control measures. Current data-driven approaches demonstrate limited adaptability to network topology variations, often resulting in reduced identification accuracy or complete failure. This paper introduces a topology-adaptive, data-driven DIM identification method that combines K-means clustering with multi-random convolutional kernel transformation to establish a high-precision base identification model. The K-means algorithm adaptively selects critical transient curves while the convolutional transformation effectively extracts essential DIM features including curve slope and instability duration from time-series data, ensuring robustness against topological changes. To enhance result reliability, an ensemble learning framework integrates Bagging algorithms with error-divergence decomposition theory, mitigating individual model uncertainty through optimal combination of multiple base models. Extensive testing on both the China Electric Power Research Institute's 36-node test system with modified configurations and a practical 8897-node power grid confirms the method's consistent accuracy across varying network topologies, demonstrating its effectiveness for real-world power system stability analysis.

     

/

返回文章
返回