董脉帆, 冯乐乐, SAEIDEHBabaee. 氨燃烧过程中H2NO中间体演化对氮氧化物NOx生成的影响[J]. 中国电机工程学报, 2025, 45(2): 469-478. DOI: 10.13334/j.0258-8013.pcsee.232386
引用本文: 董脉帆, 冯乐乐, SAEIDEHBabaee. 氨燃烧过程中H2NO中间体演化对氮氧化物NOx生成的影响[J]. 中国电机工程学报, 2025, 45(2): 469-478. DOI: 10.13334/j.0258-8013.pcsee.232386
DONG Maifan, FENG Lele, SAEIDEH Babaee. Influence of H2NO Intermediate Evolution on Nitrogen Oxides NOx Generation During Ammonia Combustion Process[J]. Proceedings of the CSEE, 2025, 45(2): 469-478. DOI: 10.13334/j.0258-8013.pcsee.232386
Citation: DONG Maifan, FENG Lele, SAEIDEH Babaee. Influence of H2NO Intermediate Evolution on Nitrogen Oxides NOx Generation During Ammonia Combustion Process[J]. Proceedings of the CSEE, 2025, 45(2): 469-478. DOI: 10.13334/j.0258-8013.pcsee.232386

氨燃烧过程中H2NO中间体演化对氮氧化物NOx生成的影响

Influence of H2NO Intermediate Evolution on Nitrogen Oxides NOx Generation During Ammonia Combustion Process

  • 摘要: 氨(NH3)是一种无碳富氢的燃料,可以实现燃烧过程中零碳排放。然而,氨中含有的N可能会被氧化生成氮氧污染物(NOx),造成大气环境污染。为此,基于量子化学计算,该文从微观层面研究氨燃料燃烧过程中H2NO中间体的演化过程,并分析其对NOx生成的影响。理论计算结果表明,H2NO是NO生成的重要中间体,通过氮氧化物分解基元反应生成NO,其活化能为93.53 kJ/mol;而H2NO的脱氢产物HNO则是NO2生成的关键中间体,通过氮氧化物氧化基元反应促成NO2的生成,其活化能为43.73 kJ/mol。从量子化学角度来看,在氨燃烧过程中高温条件均使NO和NO2生成反应的活化能和吉布斯自由能变不同程度地升高,而高压条件对其几乎没有产生影响。该研究可为降低氨燃烧过程中NOx生成提供一定理论参考。

     

    Abstract: Ammonia(NH3) is a type of carbon-free and hydrogen-rich fuel, which can achieve zero-carbon emission during combustion. However, the N contained in ammonia may be oxidized to form nitrogen oxide pollutants(NOx), causing atmospheric environmental pollution. Therefore, based on quantum chemical calculation, the evolution process of H2NO intermediate during ammonia combustion is studied at the microscopic level, and the impact on NOx generation is analyzed. The theoretical calculation results indicate that the H2NO is an important intermediate for the generation of NO, which is generated through the decomposition elementary reaction of nitrogen oxides with an activation energy of 93.53 kJ/mol. The dehydrogenation product of H2NO, HNO, is a key intermediate for the generation of NO2, which is generated through the oxidation elementary reaction of nitrogen oxides with an activation energy of 43.73 kJ/mol. From the perspective of quantum chemistry, high temperature conditions increase the activation energy and the Gibbs free energy of the NO and NO2 generation reaction, while high pressure conditions barely have effect on it during the ammonia combustion process. This study can provide theoretical reference for reducing NOx generation during ammonia combustion.

     

/

返回文章
返回