梁帅, 姚良忠, 徐箭, 程帆, 喻恒凝, 邓靖雷, 潘尚智. 基于电力电子变换器虚拟同步构网控制的电力系统暂态稳定极限提升方法[J]. 中国电机工程学报, 2025, 45(8): 2911-2924. DOI: 10.13334/j.0258-8013.pcsee.232381
引用本文: 梁帅, 姚良忠, 徐箭, 程帆, 喻恒凝, 邓靖雷, 潘尚智. 基于电力电子变换器虚拟同步构网控制的电力系统暂态稳定极限提升方法[J]. 中国电机工程学报, 2025, 45(8): 2911-2924. DOI: 10.13334/j.0258-8013.pcsee.232381
LIANG Shuai, YAO Liangzhong, XU Jian, CHENG Fan, YU Hengning, DENG Jinglei, PAN Shangzhi. Power System Transient Stability Limit Enhancement Method Based on Virtual Synchronous Grid-forming Control of Power Electronic Converters[J]. Proceedings of the CSEE, 2025, 45(8): 2911-2924. DOI: 10.13334/j.0258-8013.pcsee.232381
Citation: LIANG Shuai, YAO Liangzhong, XU Jian, CHENG Fan, YU Hengning, DENG Jinglei, PAN Shangzhi. Power System Transient Stability Limit Enhancement Method Based on Virtual Synchronous Grid-forming Control of Power Electronic Converters[J]. Proceedings of the CSEE, 2025, 45(8): 2911-2924. DOI: 10.13334/j.0258-8013.pcsee.232381

基于电力电子变换器虚拟同步构网控制的电力系统暂态稳定极限提升方法

Power System Transient Stability Limit Enhancement Method Based on Virtual Synchronous Grid-forming Control of Power Electronic Converters

  • 摘要: 以电力电子变换器为并网接口的风电及光伏等可再生能源因其电源特性与同步发电机相比存在巨大差异,其高比例接入将使电力系统的暂态稳定性特征发生重大改变,给电力系统的暂态稳定性控制带来新的挑战。该文利用电力电子变换器的虚拟同步构网特性及灵活切换控制功能,提出一种提升电力系统暂态稳定极限的构网控制方法。首先,基于电力电子变换器虚拟同步构网控制的典型控制结构与控制策略,分析并给出变换器与同步机并联系统的暂态稳定分析模型。然后,基于虚拟同步构网控制变换器有功输出占比对系统暂态稳定性的影响分析,给出通过灵活控制变换器有功输出提升系统暂态稳定极限的基本原理。在此基础上,以电压跌落深度为判据,设计基于虚拟同步构网控制反馈模式自适应切换的变换器有功灵活控制方法,实现电力系统暂态稳定极限的提升。最后,通过对电力电子变换器并网系统的仿真分析,验证所提暂态稳定极限提升控制方法的有效性。

     

    Abstract: Renewable energy sources like wind and photovoltaic power, which utilize power electronic converters as grid-connection interfaces, exhibit fundamentally different characteristics from synchronous generators. The high penetration of these renewable sources significantly alters power system transient stability characteristics and introduces new challenges for stability control. This paper proposes a method to enhance power system transient stability limits by leveraging the virtual synchronous grid-forming capabilities and flexible switching control of power electronic converters. First, we establish a transient stability analysis model for parallel converter-synchronous generator systems based on typical virtual synchronous grid-forming control structures and strategies. The analysis examines how the active power output ratio of virtual synchronous grid-forming converters affects transient stability and demonstrates the fundamental principle of improving system stability limits through flexible converter power control. Building on this foundation, we develop an adaptive active power control method that uses voltage dip depth as a switching criterion to dynamically adjust virtual synchronous grid-forming feedback modes, thereby enhancing transient stability limits. Simulation studies of power electronic converter grid-connected systems ultimately validate the effectiveness of the proposed stability enhancement approach.

     

/

返回文章
返回