张怡, 刘建帮, 杨婷婷, 刘进锋, 房方. 储热罐一维连续动态建模及最优传感器布置[J]. 中国电机工程学报, 2025, 45(8): 3120-3131. DOI: 10.13334/j.0258-8013.pcsee.232374
引用本文: 张怡, 刘建帮, 杨婷婷, 刘进锋, 房方. 储热罐一维连续动态建模及最优传感器布置[J]. 中国电机工程学报, 2025, 45(8): 3120-3131. DOI: 10.13334/j.0258-8013.pcsee.232374
ZHANG Yi, LIU Jianbang, YANG Tingting, LIU Jinfeng, FANG Fang. One-dimensional Continuous Dynamic Modeling and Optimal Sensor Placement Strategy of Heat Storage Tank[J]. Proceedings of the CSEE, 2025, 45(8): 3120-3131. DOI: 10.13334/j.0258-8013.pcsee.232374
Citation: ZHANG Yi, LIU Jianbang, YANG Tingting, LIU Jinfeng, FANG Fang. One-dimensional Continuous Dynamic Modeling and Optimal Sensor Placement Strategy of Heat Storage Tank[J]. Proceedings of the CSEE, 2025, 45(8): 3120-3131. DOI: 10.13334/j.0258-8013.pcsee.232374

储热罐一维连续动态建模及最优传感器布置

One-dimensional Continuous Dynamic Modeling and Optimal Sensor Placement Strategy of Heat Storage Tank

  • 摘要: 斜温层储热罐因其具有较高的平均净能量和㶲效率而逐渐发展成为一种主流的热储能利用方式。为解决储放热流体流量实时变化引起的罐内工质流动方向改变、常规温度分层模型不连续的问题,利用连续光滑函数近似逼近原表征工质流动方向的0-1变量,得到储热罐沿高度方向的一维连续动态温度分层模型。在此基础上,提出一种基于灵敏度矩阵的最优传感器布置策略,根据灵敏度矩阵包含的系统信息重新定义能观度指标,按照各传感器位置对系统能观度贡献度不同确定保证系统能观的最少传感器数量及相应的最优布置位置。结果表明:通过选取合适的光滑参数μ,所建立的储热罐一维连续动态模型能够准确描述内部工质在不同运行场景下沿高度方向的温度分层现象;按照最优传感器布置策略的滚动时域估计器(moving horizon estimator,MHE)观测误差的均方根误差(root mean square error,RMSE)均值和方差在所有同等数量下保证系统能观的传感器组合中均为最小。可知,该文所提出的最优传感器布置策略能够获得较好的系统能观性。

     

    Abstract: Thermocline heat storage tanks, known for their high net energy and exergy efficiency, are becoming a mainstream thermal energy storage solution. However, flow direction switching caused by real-time variations in charging/discharging mass flow creates discontinuities in conventional temperature stratification models. To address this, this study employs continuous smooth functions to approximate the 0-1 variables characterizing working fluid flow direction, resulting in a one-dimensional continuous dynamic stratified temperature model along the tank height. Building on this model, we propose an optimal sensor placement strategy based on sensitivity matrices. The system observability index is redefined using information derived from sensitivity matrices, with the minimum sensor count and optimal positions determined by each location's contribution to system observability. Simulation results demonstrate that the proposed model accurately captures vertical temperature stratification across various operating scenarios when an appropriate smoothing parameter μ is selected. Among all observable sensor combinations with equal sensor numbers, this strategy achieves the smallest mean and variance of RMSE in moving horizon estimation (MHE) observation errors, confirming its superior system observability performance.

     

/

返回文章
返回